Welcome!

Apache Authors: Gil Allouche, Liz McMillan, William Schmarzo, Christopher Harrold, Elizabeth White

Related Topics: @CloudExpo, Microservices Expo, Open Source Cloud, Containers Expo Blog, Agile Computing, Apache

@CloudExpo: Article

The Age of Big Data: How to Gain Competitive Advantage

The Drivers Behind Hadoop Adoption

We have entered the "Age of Big Data" according to a recent New York Times article. This comes as no surprise to most organizations already struggling with the onslaught of data coming from an increasing number of sources and at an increasing rate. The 2011 IDC Digital Universe Study reported that data is growing faster than Moore's Law. This trend points to a paradigm shift in how organizations process data where isolated islands and silos are being replaced by large clusters of commodity servers that keep data and compute resources together.

Another way of looking at this paradigm shift is that the growing volume and velocity of data require a new approach to networked computing. A good example of this change is found at Google. The industry now takes Google's dominance for granted, but when Google launched its beta search engine in 1998, the company was late entering the market. At the time, Yahoo! was dominant; other contenders included infoseek, excite, Lycos, Ask Jeeves and AltaVista (dominating technical searches). Within two years, Google was the dominant search provider. It wasn't until 2003, when Google published a paper on MapReduce, that the world got a glimpse into Google's back-end architecture.

Google's architecture revealed how the company was able to index significantly more data, to get far better results faster, and to achieve these superior results much more efficiently and cost-effectively than all competitors. The shift Google made was to divide complex data analysis tasks into simple subtasks that could be performed in parallel on commodity servers. Separate processes were being used to Map the data, and then Reduce it into interim or final results. This MapReduce framework would eventually become available to organizations through distributions of Apache Hadoop.

A Brief History of Hadoop
After reading Google's paper in 2003, Yahoo engineer Doug Cutting developed a Java-based implementation of MapReduce, and named it after his son's stuffed elephant, Hadoop. In 2006, Hadoop became a subproject of Lucene (a popular text search library) at the Apache Software Foundation (www.apache.org), and became its own top-level Apache project in 2008.

Essentially, Hadoop provides a way to capture, organize, store, search, share, analyze and visualize disparate data sources (structured, semi-structured and unstructured) across a large cluster of commodity computers, and is designed to scale up from dozens to thousands of servers, each offering local computation and storage.

While there are several elements that are now part of Hadoop, two are fundamental to its operation. The first is the Hadoop Distributed File System (HDFS), which serves as the primary storage system. HDFS replicates and distributes the blocks of source data to the compute nodes throughout the cluster of servers to be analyzed by one or more applications. The second is MapReduce, which creates a software framework and a programming model for writing applications capable of processing vast amounts of distributed data in parallel on very large clusters.

The open source nature of Apache Hadoop creates an ecosystem that facilitates constant advancements in its capabilities, performance, reliability and ease of use. These enhancements can be made by any individual or organization-a global community of contributors-and are then either contributed to the basic Apache library or made available in a separate (often free) commercial distribution.

In effect, Hadoop is a complete system or "stack" for data analysis. The stack includes not only the HDFS and MapReduce foundation, but also job management, development tools, schedulers, machine learning libraries, etc.

KISS: Keep It Simple, Scalable
In a paper titled The Unreasonable Effectiveness of Data, the authors (all research directors from Google) make a contrast between the elegant simplicity of physics (with equations like E = mc2) and other disciplines, noting that, "... sciences that involve human beings rather than elementary particles have proven more resistant to elegant mathematics."

The fact that simple formulas are fully capable of explaining the complex natural world, while remaining elusive in understanding human behavior, is fundamental to why Hadoop is gaining in popularity. The paper notes the frustration of economists, who lack similar simple equations or models, and explores advances being made in fields like natural language processing-a notoriously complex area that has been studied for years with many attempts at artificial intelligence as a means to gain some insight.

The authors found that relatively simple algorithms applied to massive datasets produced stunning results. One example involves scene completion. An algorithm was used to eliminate something in a picture, a car for instance, and then based on a corpus of thousands of pictures, fill in the missing background. The algorithm performed rather poorly until the corpus was increased to millions of photos. With sufficient data, the same, simple algorithm performed extremely well. This need to find patterns and fill in the "missing pieces" in any puzzle is a common theme in many data analytics applications today.

Data analytics also confronts another inherent complexity: the growth in unstructured and semi-structured data. The sources of unstructured data, such as log files, social media, videos, etc., are growing in both their size and importance. But even structured data that goes through a series of changes eventually loses some or all of its structure. Traditional analytic techniques require considerable preprocessing of unstructured and semi-structured data before being able to produce results, and the results can be wrong or misleading if the preprocessing is somehow flawed.

The ability of Hadoop to employ simple algorithms and obtain meaningful results when analyzing unstructured, semi-structured and structured data in its raw form is unprecedented-and currently unparalleled. MapReduce enables data to be analyzed in an incremental fashion (and with parallel processing) without any need to engage in complex data transformations or to otherwise preprocess any data sources, or to create any schemas or aggregate any data in advance. Sometimes the interim results can be quite revealing on their own, and any unexpected results can be used to further fine-tune additional analysis. In fact, Hadoop was designed to accommodate virtually all forms of data directly, thus eliminating the need to engage in extraordinary measures before being able to unlock the value hidden deeply within.

The Price/Performance of Data Analytics
Not only does Hadoop deliver superior data analytics capabilities and results, it does so (as Google found) with an infrastructure that is far more cost-effective than traditional data analysis tools. The reason is that scaling data analytics capabilities has long been subject to the 80/20 rule: Big gains can be achieved with little initial effort (and cost), but the returns diminish as the datasets grow to become Big Data.

In stark contrast, Hadoop can scale linearly, which is the key to both effective and cost-effective data analytics. As datasets grow, traditional data analysis environments scale in an exponential fashion, causing the additional cost required to gain additional insight to eventually become prohibitive. With Hadoop, by contrast, the cluster of commodity (read: inexpensive) servers with direct-attached storage scales linearly with the growth in the number and sizes of datasets.

Hadoop's ability to satisfy these prerequisites well is the reason for its growing popularity in Web-based businesses and data-intensive organizations, as well as at aggressive start-ups. For the former, the need to wrestle with truly Big Data justifies the need for a data analytics environment like Hadoop. For the latter, the lack of anything legacy makes it easy to benefit from Hadoop's advantages.

One major challenge to Hadoop adoption, however, remains its file system. HDFS is an append-only storage that requires data to be batch loaded in a Hadoop cluster and then later exported post-processing for use by other applications that don't support the HDFS API. And Big Data can be difficult and costly to move back and forth in this fashion owing to the inherent duplication of data across the "semantic wall" between the existing and Hadoop infrastructures.

Another barrier to production adoption of Hadoop in larger organizations involves the extraordinary measures required to make the environment dependable. Constant care is needed to ensure that single points of failure (especially in the NameNode and JobTracker) cannot cause catastrophe, and that in the case of data loss, data can be re-loaded into the Hadoop cluster.

Breaking Through the Barriers
These problems with Hadoop are, themselves, becoming part of the past. Open source communities can be quite large, creating a vibrant ecosystem. This is the case with Hadoop, where several companies are now providing commercial distributions based on open source Hadoop.

The growing number of commercial Hadoop distributions available is systematically breaking through the barriers to widespread adoption. In general, these distributions provide enhancements that make Hadoop easier to integrate into the enterprise, as well as more enterprise-class in its operation, performance and reliability. One way of achieving these enhancements is to use existing and standard communications protocols as a foundation to enable more seamless integration between legacy and Hadoop environments.

Such a common foundation facilitates making the paradigm shift in data analytics in virtually any organization. It eliminates the need to throw data back and forth over a "semantic wall" by tearing down that wall. The compatibility afforded also extends beyond the physical infrastructure and into development environments and routine operating procedures, especially those involving data protection, such as snapshots and mirroring. With standards-based file access into the Hadoop cluster, existing applications and tools, and even ordinary browsers are able to access the data directly and in real-time (vs. Hadoop's traditional batch processing.

The End - or Just the Beginning
The data analytics paradigm is changing, and the change presents a real opportunity for established organizations to take full advantage of some new and powerful capabilities without sacrificing any existing ones. Just as Google was able to do, Hadoop makes it possible for any organization to gain a significant competitive edge by taking full advantage of the insight provided by this paradigm shift.

Hadoop is indeed a game-changing technology, and Hadoop is now itself changing with the advent of enterprise-class commercial distributions. By making Hadoop more mission-critical in its operation (potentially with the same or an even lower total cost of ownership), these "next-generation" solutions make beginning the shift to the new data analytics paradigm less risky and more rewarding than ever before.

More Stories By Jack Norris

Jack Norris is vice president, marketing, MapR Technologies. He has over 20 years of enterprise software marketing experience. He leads worldwide marketing for the industry’s most advanced distribution for Hadoop. Jack’s experience ranges from defining new markets for small companies, leading marketing and business development for an early-stage cloud storage software provider, to increasing sales of new products for large public companies. Jack has also held senior executive roles with Brio Technology, SQRIBE, EMC, Rainfinity, and Bain and Company.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Big Data, cloud, analytics, contextual information, wearable tech, sensors, mobility, and WebRTC: together, these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at @ThingsExpo, Erik Perotti, Senior Manager of New Ventures on Plantronics’ Innovation team, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it ...
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
Verizon Communications Inc. (NYSE, Nasdaq: VZ) and Yahoo! Inc. (Nasdaq: YHOO) have entered into a definitive agreement under which Verizon will acquire Yahoo's operating business for approximately $4.83 billion in cash, subject to customary closing adjustments. Yahoo informs, connects and entertains a global audience of more than 1 billion monthly active users** -- including 600 million monthly active mobile users*** through its search, communications and digital content products. Yahoo also co...
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.