Welcome!

Apache Authors: Mark R. Hinkle, Carmen Gonzalez, Roger Strukhoff, Liz McMillan, Elizabeth White

Related Topics: Cloud Expo, SOA & WOA, Open Source, Virtualization, Web 2.0, Apache

Cloud Expo: Article

The Age of Big Data: How to Gain Competitive Advantage

The Drivers Behind Hadoop Adoption

We have entered the "Age of Big Data" according to a recent New York Times article. This comes as no surprise to most organizations already struggling with the onslaught of data coming from an increasing number of sources and at an increasing rate. The 2011 IDC Digital Universe Study reported that data is growing faster than Moore's Law. This trend points to a paradigm shift in how organizations process data where isolated islands and silos are being replaced by large clusters of commodity servers that keep data and compute resources together.

Another way of looking at this paradigm shift is that the growing volume and velocity of data require a new approach to networked computing. A good example of this change is found at Google. The industry now takes Google's dominance for granted, but when Google launched its beta search engine in 1998, the company was late entering the market. At the time, Yahoo! was dominant; other contenders included infoseek, excite, Lycos, Ask Jeeves and AltaVista (dominating technical searches). Within two years, Google was the dominant search provider. It wasn't until 2003, when Google published a paper on MapReduce, that the world got a glimpse into Google's back-end architecture.

Google's architecture revealed how the company was able to index significantly more data, to get far better results faster, and to achieve these superior results much more efficiently and cost-effectively than all competitors. The shift Google made was to divide complex data analysis tasks into simple subtasks that could be performed in parallel on commodity servers. Separate processes were being used to Map the data, and then Reduce it into interim or final results. This MapReduce framework would eventually become available to organizations through distributions of Apache Hadoop.

A Brief History of Hadoop
After reading Google's paper in 2003, Yahoo engineer Doug Cutting developed a Java-based implementation of MapReduce, and named it after his son's stuffed elephant, Hadoop. In 2006, Hadoop became a subproject of Lucene (a popular text search library) at the Apache Software Foundation (www.apache.org), and became its own top-level Apache project in 2008.

Essentially, Hadoop provides a way to capture, organize, store, search, share, analyze and visualize disparate data sources (structured, semi-structured and unstructured) across a large cluster of commodity computers, and is designed to scale up from dozens to thousands of servers, each offering local computation and storage.

While there are several elements that are now part of Hadoop, two are fundamental to its operation. The first is the Hadoop Distributed File System (HDFS), which serves as the primary storage system. HDFS replicates and distributes the blocks of source data to the compute nodes throughout the cluster of servers to be analyzed by one or more applications. The second is MapReduce, which creates a software framework and a programming model for writing applications capable of processing vast amounts of distributed data in parallel on very large clusters.

The open source nature of Apache Hadoop creates an ecosystem that facilitates constant advancements in its capabilities, performance, reliability and ease of use. These enhancements can be made by any individual or organization-a global community of contributors-and are then either contributed to the basic Apache library or made available in a separate (often free) commercial distribution.

In effect, Hadoop is a complete system or "stack" for data analysis. The stack includes not only the HDFS and MapReduce foundation, but also job management, development tools, schedulers, machine learning libraries, etc.

KISS: Keep It Simple, Scalable
In a paper titled The Unreasonable Effectiveness of Data, the authors (all research directors from Google) make a contrast between the elegant simplicity of physics (with equations like E = mc2) and other disciplines, noting that, "... sciences that involve human beings rather than elementary particles have proven more resistant to elegant mathematics."

The fact that simple formulas are fully capable of explaining the complex natural world, while remaining elusive in understanding human behavior, is fundamental to why Hadoop is gaining in popularity. The paper notes the frustration of economists, who lack similar simple equations or models, and explores advances being made in fields like natural language processing-a notoriously complex area that has been studied for years with many attempts at artificial intelligence as a means to gain some insight.

The authors found that relatively simple algorithms applied to massive datasets produced stunning results. One example involves scene completion. An algorithm was used to eliminate something in a picture, a car for instance, and then based on a corpus of thousands of pictures, fill in the missing background. The algorithm performed rather poorly until the corpus was increased to millions of photos. With sufficient data, the same, simple algorithm performed extremely well. This need to find patterns and fill in the "missing pieces" in any puzzle is a common theme in many data analytics applications today.

Data analytics also confronts another inherent complexity: the growth in unstructured and semi-structured data. The sources of unstructured data, such as log files, social media, videos, etc., are growing in both their size and importance. But even structured data that goes through a series of changes eventually loses some or all of its structure. Traditional analytic techniques require considerable preprocessing of unstructured and semi-structured data before being able to produce results, and the results can be wrong or misleading if the preprocessing is somehow flawed.

The ability of Hadoop to employ simple algorithms and obtain meaningful results when analyzing unstructured, semi-structured and structured data in its raw form is unprecedented-and currently unparalleled. MapReduce enables data to be analyzed in an incremental fashion (and with parallel processing) without any need to engage in complex data transformations or to otherwise preprocess any data sources, or to create any schemas or aggregate any data in advance. Sometimes the interim results can be quite revealing on their own, and any unexpected results can be used to further fine-tune additional analysis. In fact, Hadoop was designed to accommodate virtually all forms of data directly, thus eliminating the need to engage in extraordinary measures before being able to unlock the value hidden deeply within.

The Price/Performance of Data Analytics
Not only does Hadoop deliver superior data analytics capabilities and results, it does so (as Google found) with an infrastructure that is far more cost-effective than traditional data analysis tools. The reason is that scaling data analytics capabilities has long been subject to the 80/20 rule: Big gains can be achieved with little initial effort (and cost), but the returns diminish as the datasets grow to become Big Data.

In stark contrast, Hadoop can scale linearly, which is the key to both effective and cost-effective data analytics. As datasets grow, traditional data analysis environments scale in an exponential fashion, causing the additional cost required to gain additional insight to eventually become prohibitive. With Hadoop, by contrast, the cluster of commodity (read: inexpensive) servers with direct-attached storage scales linearly with the growth in the number and sizes of datasets.

Hadoop's ability to satisfy these prerequisites well is the reason for its growing popularity in Web-based businesses and data-intensive organizations, as well as at aggressive start-ups. For the former, the need to wrestle with truly Big Data justifies the need for a data analytics environment like Hadoop. For the latter, the lack of anything legacy makes it easy to benefit from Hadoop's advantages.

One major challenge to Hadoop adoption, however, remains its file system. HDFS is an append-only storage that requires data to be batch loaded in a Hadoop cluster and then later exported post-processing for use by other applications that don't support the HDFS API. And Big Data can be difficult and costly to move back and forth in this fashion owing to the inherent duplication of data across the "semantic wall" between the existing and Hadoop infrastructures.

Another barrier to production adoption of Hadoop in larger organizations involves the extraordinary measures required to make the environment dependable. Constant care is needed to ensure that single points of failure (especially in the NameNode and JobTracker) cannot cause catastrophe, and that in the case of data loss, data can be re-loaded into the Hadoop cluster.

Breaking Through the Barriers
These problems with Hadoop are, themselves, becoming part of the past. Open source communities can be quite large, creating a vibrant ecosystem. This is the case with Hadoop, where several companies are now providing commercial distributions based on open source Hadoop.

The growing number of commercial Hadoop distributions available is systematically breaking through the barriers to widespread adoption. In general, these distributions provide enhancements that make Hadoop easier to integrate into the enterprise, as well as more enterprise-class in its operation, performance and reliability. One way of achieving these enhancements is to use existing and standard communications protocols as a foundation to enable more seamless integration between legacy and Hadoop environments.

Such a common foundation facilitates making the paradigm shift in data analytics in virtually any organization. It eliminates the need to throw data back and forth over a "semantic wall" by tearing down that wall. The compatibility afforded also extends beyond the physical infrastructure and into development environments and routine operating procedures, especially those involving data protection, such as snapshots and mirroring. With standards-based file access into the Hadoop cluster, existing applications and tools, and even ordinary browsers are able to access the data directly and in real-time (vs. Hadoop's traditional batch processing.

The End - or Just the Beginning
The data analytics paradigm is changing, and the change presents a real opportunity for established organizations to take full advantage of some new and powerful capabilities without sacrificing any existing ones. Just as Google was able to do, Hadoop makes it possible for any organization to gain a significant competitive edge by taking full advantage of the insight provided by this paradigm shift.

Hadoop is indeed a game-changing technology, and Hadoop is now itself changing with the advent of enterprise-class commercial distributions. By making Hadoop more mission-critical in its operation (potentially with the same or an even lower total cost of ownership), these "next-generation" solutions make beginning the shift to the new data analytics paradigm less risky and more rewarding than ever before.

More Stories By Jack Norris

Jack Norris is vice president, marketing, MapR Technologies. He has over 20 years of enterprise software marketing experience. He leads worldwide marketing for the industry’s most advanced distribution for Hadoop. Jack’s experience ranges from defining new markets for small companies, leading marketing and business development for an early-stage cloud storage software provider, to increasing sales of new products for large public companies. Jack has also held senior executive roles with Brio Technology, SQRIBE, EMC, Rainfinity, and Bain and Company.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...

SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, aut...
The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
Be Among the First 100 to Attend & Receive a Smart Beacon. The Physical Web is an open web project within the Chrome team at Google. Scott Jenson leads a team that is working to leverage the scalability and openness of the web to talk to smart devices. The Physical Web uses bluetooth low energy beacons to broadcast an URL wirelessly using an open protocol. Nearby devices can find all URLs in the room, rank them and let the user pick one from a list. Each device is, in effect, a gateway to a web page. This unlocks entirely new use cases so devices can offer tiny bits of information or simple i...
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
TechCrunch reported that "Berlin-based relayr, maker of the WunderBar, an Internet of Things (IoT) hardware dev kit which resembles a chunky chocolate bar, has closed a $2.3 million seed round, from unnamed U.S. and Switzerland-based investors. The startup had previously raised a €250,000 friend and family round, and had been on track to close a €500,000 seed earlier this year — but received a higher funding offer from a different set of investors, which is the $2.3M round it’s reporting."
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital busines...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Swiss innovators dizmo Inc. launches its ground-breaking software, which turns any digital surface into an immersive platform. The dizmo platform seamlessly connects digital and physical objects in the home and at the workplace. Dizmo breaks down traditional boundaries between device, operating systems, apps and software, transforming the way users work, play and live. It supports orchestration and collaboration in an unparalleled way enabling any data to instantaneously be accessed on any surface, anywhere and made interactive. Dizmo brings fantasies as seen in Sci-fi movies such as Iro...
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other mach...
This Internet of Nouns trend is still in the early stages and many of our already connected gadgets do provide human benefits over the typical infotainment. Internet of Things or IoT. You know, where everyday objects have software, chips, and sensors to capture data and report back. Household items like refrigerators, toilets and thermostats along with clothing, cars and soon, the entire home will be connected. Many of these devices provide actionable data - or just fun entertainment - so people can make decisions about whatever is being monitored. It can also help save lives.