Welcome!

Apache Authors: Pat Romanski, Liz McMillan, Elizabeth White, Christopher Harrold, Janakiram MSV

Related Topics: @CloudExpo, Microservices Expo, Containers Expo Blog, Agile Computing, Apache, Cloud Security

@CloudExpo: Article

Arrival of Big Data Opens Up a New Range of Analytics

It's happening: Hadoop and SQL worlds are converging

With Strata, IBM IOD, and Teradata Partners conferences all occurring this week, it’s not surprising that this is a big week for Hadoop-related announcements. The common thread of announcements is essentially, “We know that Hadoop is not known for performance, but we’re getting better at it, and we’re going to make it look more like SQL.” In essence, Hadoop and SQL worlds are converging, and you’re going to be able to perform interactive BI analytics on it.

The opportunity and challenge of Big Data from new platforms such as Hadoop is that it opens a new range of analytics. On one hand, Big Data analytics have updated and revived programmatic access to data, which happened to be the norm prior to the advent of SQL. There are plenty of scenarios where taking programmatic approaches are far more efficient, such as dealing with time series data or graph analysis to map many-to-many relationships.

It also leverages in-memory data grids such as Oracle Coherence, IBM WebSphere eXtreme Scale, GigaSpaces and others, and, where programmatic development (usually in Java) proved more efficient for accessing highly changeable data for web applications where traditional paths to the database would have been I/O-constrained. Conversely Advanced SQL platforms such as Greenplum and Teradata Aster have provided support for MapReduce-like programming because, even with structured data, sometimes using a Java programmatic framework is a more efficient way to rapidly slice through volumes of data.

But when you talk analytics, you can’t simply write off the legions of SQL developers that populate enterprise IT shops.

Until now, Hadoop has not until now been for the SQL-minded. The initial path was, find someone to do data exploration inside Hadoop, but once you’re ready to do repeatable analysis, ETL (or ELT) it into a SQL data warehouse. That’s been the pattern with Oracle Big Data Appliance (use Oracle loader and data integration tools), and most Advanced SQL platforms; most data integration tools provide Hadoop connectors that spawn their own MapReduce programs to ferry data out of Hadoop. Some integration tool providers, like Informatica, offer tools to automate parsing of Hadoop data. Teradata Aster and Hortonworks have been talking up the potentials of HCatalog, in actuality an enhanced version of Hive with RESTful interfaces, cost optimizers, and so on, to provide a more SQL friendly view of data residing inside Hadoop.

But when you talk analytics, you can’t simply write off the legions of SQL developers that populate enterprise IT shops. And beneath the veneer of chaos, there is an implicit order to most so-called “unstructured” data that is within the reach programmatic transformation approaches that in the long run could likely be automated or packaged inside a tool.

At Ovum, we have long believed that for Big Data to crossover to the mainstream enterprise, that it must become a first-class citizen with IT and the data center. The early pattern of skunk works projects, led by elite, highly specialized teams of software engineers from Internet firms to solve Internet-style problems (e.g., ad placement, search optimization, customer online experience, etc.) are not the problems of mainstream enterprises. And neither is the model of recruiting high-priced talent to work exclusively on Hadoop sustainable for most organizations; such staffing models are not sustainable for mainstream enterprises. It means that Big Data must be consumable by the mainstream of SQL developers.

Making Hadoop more SQL-like is hardly new

Hive and Pig became Apache Hadoop projects because of the need for SQL-like metadata management and data transformation languages, respectively; HBase emerged because of the need for a table store to provide a more interactive face – although as a very sparse, rudimentary column store, does not provide the efficiency of an optimized SQL database (or the extreme performance of some columnar variants). Sqoop in turn provides a way to pipeline SQL data into Hadoop, a use case that will grow more common as organizations look to Hadoop to provide scalable and cheaper storage than commercial SQL. While these Hadoop subprojects that did not exactly make Hadoop look like SQL, they provided building blocks from which many of this week’s announcements leverage.

Progress marches on

One train of thought is that if Hadoop can look more like a SQL database, more operations could be performed inside Hadoop. That’s the theme behind Informatica’s long-awaited enhancement of its PowerCenter transformation tool to work natively inside Hadoop. Until now, PowerCenter could extract data from Hadoop, but the extracts would have to be moved to a staging server where the transformation would be performed for loading to the familiar SQL data warehouse target. The new offering, PowerCenter Big Data Edition, now supports an ELT pattern that uses the power of MapReduce processes inside Hadoop to perform transformations. The significance is that PowerCenter users now have a choice: load the transformed data to HBase, or continue loading to SQL.

There is growing support for packaging Hadoop inside a common hardware appliance with Advanced SQL. EMC Greenplum was the first out of gate with DCA (Data Computing Appliance) that bundles its own distribution of Apache Hadoop (not to be confused with Greenplum MR, a software only product that is accompanied by a MapR Hadoop distro).

Teradata Aster has just joined the fray with Big Analytics Appliance, bundling the Hortonworks Data Platform Hadoop; this move was hardly surprising given their growing partnership around HCatalog, an enhancement of the SQL-like Hive metadata layer of Hadoop that adds features such as a cost optimizer and RESTful interfaces that make the metadata accessible without the need to learn MapReduce or Java. With HCatalog, data inside Hadoop looks like another Aster data table.

Not coincidentally, there is a growing array of analytic tools that are designed to execute natively inside Hadoop. For now they are from emerging players like Datameer (providing a spreadsheet-like metaphor; which just announced an app store-like marketplace for developers), Karmasphere (providing an application develop tool for Hadoop analytic apps), or a more recent entry, Platfora (which caches subsets of Hadoop data in memory with an optimized, high performance fractal index).

Yet, even with Hadoop analytic tooling, there will still be a desire to disguise Hadoop as a SQL data store, and not just for data mapping purposes.

Yet, even with Hadoop analytic tooling, there will still be a desire to disguise Hadoop as a SQL data store, and not just for data mapping purposes. Hadapt has been promoting a variant where it squeezes SQL tables inside HDFS file structures – not exactly a no-brainer as it must shoehorn tables into a file system with arbitrary data block sizes. Hadapt’s approach sounds like the converse of object-relational stores, but in this case, it is dealing with a physical rather than a logical impedance mismatch.

Hadapt promotes the ability to query Hadoop directly using SQL. Now, so does Cloudera. It has just announced Impala, a SQL-based alternative to MapReduce for querying the SQL-like Hive metadata store, supporting most but not all forms of SQL processing (based on SQL 92; Impala lacks triggers, which Cloudera deems low priority). Both Impala and MapReduce rely on parallel processing, but that’s where the similarity ends. MapReduce is a blunt instrument, requiring Java or other programming languages; it splits a job into multiple, concurrently, pipelined tasks where, at each step along the way, reads data, processes it, and writes it back to disk and then passes it to the next task.

Conversely, Impala takes a shared nothing, MPP approach to processing SQL jobs against Hive; using HDFS, Cloudera claims roughly 4x performance against MapReduce; if the data is in HBase, Cloudera claims performance multiples up to a factor of 30. For now, Impala only supports row-based views, but with columnar (on Cloudera’s roadmap), performance could double. Cloudera plans to release a real-time query (RTQ) offering that, in effect, is a commercially supported version of Impala.

By contrast, Teradata Aster and Hortonworks promote a SQL MapReduce approach that leverages HCatalog, an incubating Apache project that is a superset of Hive that Cloudera does not currently include in its roadmap. For now, Cloudera claims bragging rights for performance with Impala; over time, Teradata Aster will promote the manageability of its single appliance, and with the appliance has the opportunity to counter with hardware optimization.

The road to SQL/programmatic convergence

Either way – and this is of interest only to purists – any SQL extension to Hadoop will be outside the Hadoop project. But again, that’s an argument for purists. What’s more important to enterprises is getting the right tool for the job – whether it is the flexibility of SQL or raw power of programmatic approaches.

SQL convergence is the next major battleground for Hadoop. Cloudera is for now shunning HCatalog, an approach backed by Hortonworks and partner Teradata Aster. The open question is whether Hortonworks can instigate a stampede of third parties to overcome Cloudera’s resistance. It appears that beyond Hive, the SQL face of Hadoop will become a vendor-differentiated layer.

Part of conversion will involve a mix of cross-training and tooling automation. Savvy SQL developers will cross train to pick up some of the Java- or Java-like programmatic frameworks that will be emerging. Tooling will help lower the bar, reducing the degree of specialized skills necessary.

And for programming frameworks, in the long run, MapReduce won’t be the only game in town. It will always be useful for large-scale jobs requiring brute force, parallel, sequential processing. But the emerging YARN framework, which deconstructs MapReduce to generalize the resource management function, will provide the management umbrella for ensuring that different frameworks don’t crash into one another by trying to grab the same resources. But YARN is not yet ready for primetime – for now it only supports the batch job pattern of MapReduce. And that means that YARN is not yet ready for Impala or vice versa.

Either way – and this is of interest only to purists – any SQL extension to Hadoop will be outside the Hadoop project. But again, that’s an argument for purists.

Of course, mainstreaming Hadoop – and Big Data platforms in general – is more than just a matter of making it all look like SQL. Big Data platforms must be manageable and operable by the people who are already in IT; they will need some new skills and grow accustomed to some new practices (like exploratory analytics), but the new platforms must also look and act familiar enough. Not all announcements this week were about SQL; for instance, MapR is throwing a gauntlet to the Apache usual suspects by extending its management umbrella beyond the proprietary NFS-compatible file system that is its core IP to the MapReduce framework and HBase, making a similar promise of high performance.

On the horizon, EMC Isilon and NetApp are proposing alternatives promising a more efficient file system but at the “cost” of separating the storage from the analytic processing. And at some point, the Hadoop vendor community will have to come to grips with capacity utilization issues, because in the mainstream enterprise world, no CFO will approve the purchase of large clusters or grids that get only 10 – 15 percent utilization. Keep an eye on VMware’s Project Serengeti.

They must be good citizens in data centers that need to maximize resource (e.g., virtualization, optimized storage); must comply with existing data stewardship policies and practices; and must fully support existing enterprise data and platform security practices. These are all topics for another day.

You may also be interested in:

More Stories By Tony Baer

Tony Baer is Principal Analyst with Ovum, leading Ovum’s research on the software lifecycle. Working in concert with other members of Ovum’s software group, his research covers the full lifecycle from design and development to deployment and management. Areas of focus include application lifecycle management, software development methodologies (including agile), SOA, IT service management/ITIL, and IT management/governance.

Baer has been a noted authority on software development platforms and integration architecture for nearly 20 years. Prior to joining Ovum, he was an independent analyst whose company ‘onStrategies’ delivered software development and integration tools to vendors with technology assessment and market positioning services. He also led Computerwire’s CIO Agenda and Computer Finance end-user best practices research services.

Follow him on Twitter @TonyBaer or read his blog site www.onstrategies.com/blog.

@ThingsExpo Stories
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...