Welcome!

Apache Authors: Liz McMillan, Pat Romanski, Elizabeth White, Janakiram MSV, Gil Allouche

Related Topics: Microservices Expo, Java IoT, Industrial IoT, Microsoft Cloud, IoT User Interface, Apache

Microservices Expo: Article

Intelligent Complex Event Processing with Artificial Neural Network

Solve highly complex problems in real or near real time

In the current world, data is continuously being generated across various layers of organizations and environment due to changes in the system states or due to the occurrence of new events. These changes in the state of the existing system can happen due to the arrival of a new order request, customer service calls for complaints or feedback, changes in the company stock prices, text or multimedia messages, emails, social media posts, traffic reports, weather reports or any other kind of data. Simply producing reports using these data on a pre-defined schedule is not enough. Decision makers need real-time alerts and intelligent insight of all that is happening within and around the organization so that they may take meaningful reactive and proactive action before it is too late based on the new information being continuously generated.

A powerful technique called Complex Event Processing (CEP) is used for analyzing events coming from multiple sources over a specific period of time by detecting complex patterns between events and by making correlations. Apart from CEP, Artificial Neural Network (ANN) is also used to model complex relationships between input events data. Both the approaches have their own pros and cons. In this article, we tried to describe a use case in the health care domain with the solution architecture using both CEP and ANN, combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

The following two sections gives brief introduction about CEP and ANN respectively with their key benefits. In section 4, we have explained the approach which combines both the CEP and the ANN efficiently to provide better solution of complex problems. Section 5 and 6 explains the Health Care: Patient Monitoring System use case with the problem description and proposed solution approach using CEP and ANN, followed by the section with summary and conclusion.

Complex Event Processing
Complex event processing is one of the key Operational Intelligence technology used to process one or more stream of data and information (also known as events) and deriving a meaningful conclusion using them. It allows one to set the request for an analysis or some query and then have it continuously executed and evaluated over time against one or many streams of events in a highly efficient manner. CEP is all about processing events that combines data from many sources to infer events or patterns that suggest more complicated circumstances [1].  For example, CEP can be used as Fraud Detection system, to detect suspicious credit card usage by monitoring credit card activity in real time and relating the current transactions with the historical data about a particular customer. The historical data which can be used by CEP Fraud Detection system can be an average transaction amount, minimum and maximum values of the previous transactions, transaction frequencies, locality etc. On detecting fraudulent activity, CEP system can send an alert via an SMS or email to the customer or the credit card service provider to take quick reaction.

The primary goal of CEP is to (1) detect meaningful events or pattern of events which signifies either threats or opportunities from the series of events being received continuously and (2) send alerts for the same to responsible entity to respond as quickly as possible. The following diagram (as figure-1) describes high level view of the CEP system.

Figure 1: High-level view of the CEP system

As shown in Figure 1, the core of the complex event processing system is made up of set of input adapters, set of output adapters and various event processing modules such as event filtering modules, in-memory caching, aggregation over different windows (time-window, sliding window, tumbling window etc.), database lookups module, database writes module, correlation, joins, event pattern matching, state machines, dynamic queries etc. More the number of I/O adapters supported by the CEP, more flexible and adaptable it is and will be able to cover wide range of use cases as compared to the CEP tool having support for limited set of I/O adapters.

Key Benefits of CEP
The following are some of the key benefits the CEP provides to the business.

  • Automatically identifies rare but important relationships between seemingly unrelated events or stream of events and accelerate timely responses to both the threats and opportunities.
  • Using sophisticated analysis and event pattern matching techniques, the CEP improves resource allocation and timely problem resolution by prioritize situations that require the most urgent attention in real or near real time based on arrival of events.
  • CEP helps organization to reduce operating costs by monitoring end-to-end performance of the system and provide timely alerts to rapidly identify potential SLA violations.
  • CEP helps organization to fine tune their business processes by correlating SLA performance with industry metrics e.g. Six Sigma and various Quality metrics, to enhance overall productivity.

Artificial Neural Network
An Artificial Neural Network (ANN) is a computational model which resembles with the way human brain is made up of in structure and the way it works. Similar to human brain which is made up of billions of neurons interconnected by synapses, the ANN can be form as a network of computational nodes connected with each other through links. The ANN needs to be trained repeatedly with specific set of training data before it can be used in production environment. Due to its adaptive nature, the internal structure of the ANN can easily be changed based on external or internal information that flows through the network during the learning phase [2]. The links are assigned weights during training process, which regulate the flow of data from one node to another. ANNs are used to model complex relationships between inputs and outputs data. ANN can efficiently find various patterns in input data or to predict future values of the system parameters. Due to its flexible construct, ANN can be very helpful in modeling complex systems which are very difficult otherwise by using traditional modeling techniques. Artificial neural networks are being applied in diverse of domains and fields. They are extensively used for doing image processing and recognition, speech recognition, credit card fraud detection, for prediction of protein structure in biotechnology and in the field of genetic science.

Artificial neural network consists of two types of interfaces with the external world, the input and the output. Since the ANN is made up of nodes or neurons and the links between them, a subset of total nodes in the ANN act as input nodes, which take data from the external world, a subset of nodes act as output node, which produces result and zero or more hidden nodes act as intermediary nodes, with having only connections with input or output nodes or other hidden nodes.  Hence, the ANN is made up of nodes in input layer, nodes in output layer and zero or more internal layers.

Figure 2: High-level view of artificial neural network

The high level view of ANN is shown in figure-2. The diagram shows a typical neural network with total 12 nodes, three nodes in the input layer, seven nodes in the hidden layer and two nodes in the output layer. Before the neural network can be used in actual production environment, it is needed to be trained for particular environment. The process of training of ANN is called learning of neural network, which is generally done in one of the following three ways:  (a) supervised learning; (b) unsupervised learning and (c) reinforcement learning. The more details about the ANN learning can be found in [2].

Key Benefits of ANN
Since ANNs can infer a function from inputs, they particularly are used in the applications where the complexity of the input data or system modeling makes the design of such a function impractical using traditional approaches. Following are some of the key benefits ANN provides.

  • It is very easy to apply ANN to problem domains where the relationships are quite dynamic or non-linear among the input and output.
  • Since ANN is capable of capturing many kind of relationships and complex patterns among data, ANN allows user to easily model the system which otherwise is very difficult or impossible to represent through traditional modeling approaches.
  • The training information is not stored in any single element but is distributed in the entire network structure. This makes ANN fault tolerant and it reduces the impact of erroneous input on the result.

CEP and ANN Together
Having seen the key properties and benefits of using both, CEP and ANN, this section describes what if one apply both together for specific set of problems to make the modeling of the system and solution easy and efficient. The CEP is best in accepting data or events from multiple channels and apply various event processing operations on it, such as event filtering, event pattern matching, aggregation etc. Apart from that user can configure alerts based on various thresholds on various system parameters. But the CEP tools lakes the ability to predict future events or determine the values of the system parameters for future events, which can be efficiently done by the ANN. So if we combine best of CEP and best of ANN for a particular problem, the resulting solution could be very effective and efficient. In the following sections, we have described how the CEP and the ANN can be used together to solve a particular problem of patient monitoring system in the domain of Health care and medicines.

Patient Monitoring System
The patient monitoring system monitors and keeps track of various body parameters of the patient and provides the data for analysis to monitoring system. Various body parameters could be blood pressure, the percentage of oxygen in the blood, glucose level in the blood, heart beat rate, change in body temperature etc. Data provided by the patient monitoring system helps to make diagnostic decisions easy and more reliable. The quality of patient treatment and care giving can greatly be improved with the use of patient monitoring systems, since it allows generating alerts in case of sudden changes in the patient body parameters which could be dangerous to the patient's health or could be life threatening some time [3].

A Use Case
Goals of the patient monitoring system are to (1) continuously keeps track of the patient's body parameters and store the data for present or future references, (2) identify life-threatening changes in patient's body and raises timely alarms for the same, and (3) to determine whether patient's health is in normal condition or it is improving or worsening based on the continuously arriving input data from various medical monitors. Since no two human bodies react in a same way against given situation or medication, it is very difficult to derived common rule set which can be applied to all human bodies. Similarly, one person's body also reacts differently in different medical and environmental situations. For example, a particular heart beat rate can be normal in some situation, while the same can be very abnormal in the other situation. So to judge the proper health condition, a trained professional is required, i.e. a specialist doctor, who studies all the observations and determine the correct state of patient's health. If the patient monitoring system is equipped with some intelligent agent who will use patient's medical history and current body parameters observations, then quality of patient care delivery can greatly be improved. We combine CEP and ANN together to propose system architecture which tries to act as an intelligent agent of the patient monitoring system, which is described in the following section.

System Architecture of the intelligent patient monitoring system using CEP and ANN
The following diagram, in Figure 3, shows the architecture of the intelligent patient monitoring system using CEP and ANN. There are total five key components; (1) Medical monitors, (2) CEP, (3) Patient's medical history and diagnosis data store, (4) ANN and (5) ANN output to action message converter.

(1) Medical Monitors
Medical monitors are medical devices used for monitoring patient's body parameters. It can consist of one or more body parameter sensors, processing components, display devices as well as communication links for displaying, recording or transmitting data or results elsewhere through a monitoring network. In the proposed architecture, the data generated by medical monitors are fed into the CEP system. [3]

Figure 3: Architecture of the intelligent patient monitoring system using CEP and ANN

The CEP section of the proposed architecture is one of the key components of the system. It receives all the monitored data and applies various event processing techniques, such as filtering, aggregation etc. over input event streams and provides the data for further processing to ANN module. Various input adapters available in CEP make it possible to collect data from different types of sensors or monitors and process them collectively. In CEP module, various event processing rule are written specific to the patient.

(3) Patient's medical history and diagnosis data store
This is the data store where patient's medical history and diagnosis data is stored. It could be traditional RDBMS storage system. The data stored in this storage are used for ANN training purpose. The new data is continuously added into the same data storage and will be used next time when ANN will be trained again with patient's latest medical and diagnosis data.

(4) ANN
The ANN model for the patient is computational neural network specific to the patient and trained using patient's all medical and diagnosis data. This trained ANN model is used for real-time diagnosis and care delivery. The decision is taken based on the input data coming from the CEP output adapters. The patient specific ANN model is trained at regular interval may be daily or on need bases. These regular updates which include latest knowledge about measured body parameters, diagnosis and medication information of the patient, helps ANN model to make accurate predictions. It is also possible to make ANN take biased decision by giving more weight to either historical data or the latest data during training. All these make ANN the most critical component of the system.

(5) ANN output to action message converter
The output generated by the ANN is generally real numbers and they are needed to be mapped to the meaningful information so that appropriate action can be taken. This is done by the ANN output to action message converter. The module not only map ANN output to real world information but it can also sends action data or alerts to devices or human being through email, SMS, alarm system etc. The threshold for various alerts can be configured so it can adapt to the changes happening to the health and body.

Together all these components make a very flexible, intelligent and efficient patient monitoring system. The proposed architecture shows how one can use CEP and ANN together more effectively to model the complex problem and provide efficient solution alternative over the traditional approaches.

Conclusion
Complex event processing and artificial neural network are the two widely used solution techniques for the problems that are very difficult to model using traditional approaches. In this article, we have described both the approaches in brief with their key capabilities. We have also described a use case for intelligent patient monitoring system with the solution architecture using both CEP and ANN and combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

References

  1. Complex event processing, http://en.wikipedia.org/wiki/Complex_event_processing#cite_note-1
  2. Artificial neural network, http://en.wikipedia.org/wiki/Artificial_neural_network
  3. Patient Monitoring Systems - Part 1, http://www.philblock.info/hitkb/p/patient_monitoring_systems.html

More Stories By Kamalkumar Mistry

Kamalkumar Mistry is a Technology Analyst at Infosys Limited, Pune, India. At Infosys, he is part of a research group called Infosys Labs (http://www.infosys.com/infosys-labs).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future - it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....
What are the new priorities for the connected business? First: businesses need to think differently about the types of connections they will need to make – these span well beyond the traditional app to app into more modern forms of integration including SaaS integrations, mobile integrations, APIs, device integration and Big Data integration. It’s important these are unified together vs. doing them all piecemeal. Second, these types of connections need to be simple to design, adapt and configure...
Digital innovation is the next big wave of business transformation based on digital technologies of which IoT and Big Data are key components, For example: Business boundary innovation is a challenge to excavate third-party business value using IoT and BigData, like Nest Business structure innovation may propose re-building business structure from scratch, as Uber does in the taxicab industry The social model innovation is also a big challenge to the new social architecture with the design fr...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
Data is an unusual currency; it is not restricted by the same transactional limitations as money or people. In fact, the more that you leverage your data across multiple business use cases, the more valuable it becomes to the organization. And the same can be said about the organization’s analytics. In his session at 19th Cloud Expo, Bill Schmarzo, CTO for the Big Data Practice at EMC, will introduce a methodology for capturing, enriching and sharing data (and analytics) across the organizati...
SYS-CON Events announced today that Bsquare has been named “Silver Sponsor” of SYS-CON's @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. For more than two decades, Bsquare has helped its customers extract business value from a broad array of physical assets by making them intelligent, connecting them, and using the data they generate to optimize business processes.
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2016 Silicon Valley. The 19th Cloud Expo and 6th @ThingsExpo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Interne...
19th Cloud Expo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterpri...
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lea...
According to Forrester Research, every business will become either a digital predator or digital prey by 2020. To avoid demise, organizations must rapidly create new sources of value in their end-to-end customer experiences. True digital predators also must break down information and process silos and extend digital transformation initiatives to empower employees with the digital resources needed to win, serve, and retain customers.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
Businesses are struggling to manage the information flow and interactions between all of these new devices and things jumping on their network, and the apps and IT systems they control. The data businesses gather is only helpful if they can do something with it. In his session at @ThingsExpo, Chris Witeck, Principal Technology Strategist at Citrix, will discuss how different the impact of IoT will be for large businesses, expanding how IoT will allow large organizations to make their legacy ap...
Video experiences should be unique and exciting! But that doesn’t mean you need to patch all the pieces yourself. Users demand rich and engaging experiences and new ways to connect with you. But creating robust video applications at scale can be complicated, time-consuming and expensive. In his session at @ThingsExpo, Zohar Babin, Vice President of Platform, Ecosystem and Community at Kaltura, will discuss how VPaaS enables you to move fast, creating scalable video experiences that reach your...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - comp...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.
One of biggest questions about Big Data is “How do we harness all that information for business use quickly and effectively?” Geographic Information Systems (GIS) or spatial technology is about more than making maps, but adding critical context and meaning to data of all types, coming from all different channels – even sensors. In his session at @ThingsExpo, William (Bill) Meehan, director of utility solutions for Esri, will take a closer look at the current state of spatial technology and ar...
Fifty billion connected devices and still no winning protocols standards. HTTP, WebSockets, MQTT, and CoAP seem to be leading in the IoT protocol race at the moment but many more protocols are getting introduced on a regular basis. Each protocol has its pros and cons depending on the nature of the communications. Does there really need to be only one protocol to rule them all? Of course not. In his session at @ThingsExpo, Chris Matthieu, co-founder and CTO of Octoblu, walk you through how Oct...
The vision of a connected smart home is becoming reality with the application of integrated wireless technologies in devices and appliances. The use of standardized and TCP/IP networked wireless technologies in line-powered and battery operated sensors and controls has led to the adoption of radios in the 2.4GHz band, including Wi-Fi, BT/BLE and 802.15.4 applied ZigBee and Thread. This is driving the need for robust wireless coexistence for multiple radios to ensure throughput performance and th...
“We're a global managed hosting provider. Our core customer set is a U.S.-based customer that is looking to go global,” explained Adam Rogers, Managing Director at ANEXIA, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...