Click here to close now.


Apache Authors: Liz McMillan, Craig Lowell, Jim Scott, AppDynamics Blog, Dana Gardner

Related Topics: Microservices Expo, Java IoT, PowerBuilder, Microsoft Cloud, @CloudExpo, Apache

Microservices Expo: Article

From Efficiency to Effectiveness: The Role of Data

The excitement about Big Data is really about being able to take advantage of the data in which we are all awash

Efficiency may be the most commonly used term in enterprise software marketing - that or "ensure." And not without reason - efficiency is one of the key value propositions of most enterprise software, from collaboration tools, to productivity tools, to integration tools and beyond. At a certain point though, the gains to be achieved from efficiency become smaller and smaller and of lesser and lesser business significance.

This is resulting in a shift in focus from efficiency to effectiveness. At times, these goals are twin, but in many cases, they are not - the most effective allocation of resources may not be the most efficient - at least in the short-term. Managing an organization with an eye toward effectiveness can be a challenge, because business metrics are often tied to processes and other types of "discrete" pieces of work, and how quickly/efficiently they are completed. As a result, when an organization makes the shift to managing for effectiveness rather than efficiency, the metrics used to evaluate success typically have to be "leveled-up," that is, taken up to the level that really matters to the business. An example of this leveling up occurred several years back when customer service organizations changed their focus from shortening call times to increasing the rate of first call resolution. Resolving a customer issue on the first call may result in increasing the length of the call, but over the long term it is a more effective approach, because it may result in a shorter overall expenditure of the Customer Service Representatives' aggregated time, and will certainly result in more satisfied customers.

Operationalizing this "leveling-up" is not an easy task. Most of the greatest challenges associated with doing so relate to data. First, organizations must have an idea that their current efficiency-based metrics are not serving them well. The only way to know that your current practices are ill-serving you is to capture data to make that point. In the CSR example above, that means being able to find out that a customer has called multiple times. But the way that calls are typically handled, a case is created for each one, meaning that the data doesn't tell a story of a customer calling multiple times and taking the time of many different CSRs; instead, the data tells of ten individual calls, each of which lasted three minutes. The complexity of the problem is actually greater than this, because what happens more often than not in such cases is that a customer will try to resolve the problem by contacting the organization through multiple different channels - phone, Web, email, chat. Because the data is so often fragmented, organizations will typically find out about such broken practices through a series of irate letters and phone calls, or in the worst case scenario, in a drop-off in customers. Whatever the means of notification, at some point it becomes clear to the organization that they not only have a problem of misaligned incentives, but also a data problem. They then turn to the data to understand what has been going on in their organization and how to manage more effectively.

The story likely can be pieced together from the data, but the organization must still make sure they are asking the right questions - if "number of cold calls made" is not the right metric, what is? Once the right questions have been identified, then it's time to turn to the data. Because in most organizations the data to be captured was not set up with these higher-level goals in mind, getting the right answer from the data requires some work. The data across these various systems must be integrated and federated - all of the necessary data must be extracted from the various systems inside and out of the organization and loosely coupled so that the data is telling the whole story. It also requires cleansing the data and rationalizing it such that data about the same thing being captured in different systems is in sync.

It may be that even after having all of the data rationalized and accessible, the crucial data needed to manage the business more effectively is not currently being captured. This is a relatively small problem, with practically everything digitized and virtualized, there is very likely a way to capture the data an organization seeks. A common scenario is that the data is being captured, but in an off-premise cloud-based application or in a partner's application or it may be that the data is embedded in the activities carried out on social networks. In all of these cases, new technology makes the data accessible and manageable. As a result, so, too, are the answers to the real business questions of how to manage the business more effectively.

Data integration tools make it possible to integrate and federate data from cloud-based applications with on-premise systems, to incorporated data from third parties. The ability to use Hadoop MapReduce to take in and manage unprecedented volumes of data from social networks and other non-traditional sources makes it possible to truly have, manage and analyze all of your data. New social MDM technology means that you can tap into the data embedded in social interactions on social networks and use this to create an even more fully fleshed-out golden record for your customers.

In truth, it is the gains we have made in efficiency, in finding ever-more efficient ways to access, store and analyze data that make this turn towards effectiveness possible. Without being able to do all of the above in a time- and cost-efficient manner, it is not possible to use the data to manage more effectively.

In many ways, this is what the hype about Big Data is all about. The unarticulated and implicit excitement about Big Data is really about being able to take advantage of the data in which we are all awash and use it to manage our organizations more effectively than ever before. Managing for effectiveness looks different in every industry. In retail, managing for effectiveness is understanding customers - catering to them when, where, how and with what they want. In pharma, managing for effectiveness is limiting physician wash out, getting more clinical trial data more quickly, and being able to complete or pull the plug on trials faster based on the results of that data. In every industry, managing for effectiveness means using the power of data to make the best business decisions possible, getting a true return on data.

More Stories By Emily Burns

Emily Burns is responsible for Platform Product Marketing at Informatica. In that capacity, she has two principal roles. First, she evangelizes the benefits to be achieved from managing data as a key corporate asset, especially using the Informatica Platform. Second, she works to identify and communicate best practices and methodologies that demonstrate how to manage data as a corporate asset.

Prior to Informatica, Emily worked at Pegasystems and at TIBCO. While at Pegasystems, she led their case management product initiative. At TIBCO she was responsible for product marketing for the BPM suite. Emily holds a BS with majors in biochemistry and music, with an emphasis on piano performance. She is an avid reader, cook, and triathlete. Emily lives in Boston with her husband and two young sons.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of, and Fred Yatzeck, principal architect leading product development at, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at the same time reduce Time to Market (TTM) by using plug and play capabilities offered by a robust IoT ...
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT.
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Clearly the way forward is to move to cloud be it bare metal, VMs or containers. One aspect of the current public clouds that is slowing this cloud migration is cloud lock-in. Every cloud vendor is trying to make it very difficult to move out once a customer has chosen their cloud. In his session at 17th Cloud Expo, Naveen Nimmu, CEO of Clouber, Inc., will advocate that making the inter-cloud migration as simple as changing airlines would help the entire industry to quickly adopt the cloud without worrying about any lock-in fears. In fact by having standard APIs for IaaS would help PaaS expl...
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Valley. The program, to be aired during the peak viewership season of the year, will have a major impac...
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
Organizations already struggle with the simple collection of data resulting from the proliferation of IoT, lacking the right infrastructure to manage it. They can't only rely on the cloud to collect and utilize this data because many applications still require dedicated infrastructure for security, redundancy, performance, etc. In his session at 17th Cloud Expo, Emil Sayegh, CEO of Codero Hosting, will discuss how in order to resolve the inherent issues, companies need to combine dedicated and cloud solutions through hybrid hosting – a sustainable solution for the data required to manage I...
Apps and devices shouldn't stop working when there's limited or no network connectivity. Learn how to bring data stored in a cloud database to the edge of the network (and back again) whenever an Internet connection is available. In his session at 17th Cloud Expo, Bradley Holt, Developer Advocate at IBM Cloud Data Services, will demonstrate techniques for replicating cloud databases with devices in order to build offline-first mobile or Internet of Things (IoT) apps that can provide a better, faster user experience, both offline and online. The focus of this talk will be on IBM Cloudant, Apa...
WebRTC is about the data channel as much as about video and audio conferencing. However, basically all commercial WebRTC applications have been built with a focus on audio and video. The handling of “data” has been limited to text chat and file download – all other data sharing seems to end with screensharing. What is holding back a more intensive use of peer-to-peer data? In her session at @ThingsExpo, Dr Silvia Pfeiffer, WebRTC Applications Team Lead at National ICT Australia, will look at different existing uses of peer-to-peer data sharing and how it can become useful in a live session to...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.