Welcome!

Apache Authors: Elizabeth White, Pat Romanski, Liz McMillan, Christopher Harrold, Janakiram MSV

Related Topics: Java IoT, Microservices Expo, Open Source Cloud, Containers Expo Blog, Machine Learning , Apache

Java IoT: Article

Losing Sleep Over Monitoring Complex Distributed Java Apps?

Analytics, metrics and modeling to the rescue

When IT people think about application performance monitoring, they're usually thinking about which metrics they should monitor. Some examples of resource metrics may include CPU utilization, disk queue length, and thread pool size. Examples of performance metrics may be application response time, responses per interval of time, and concurrent invocations of an application.

"Modeling" is probably not the first term that comes to mind when considering application performance monitoring. But, in fact, "modeling" is exactly what a "domain expert" does when he decides how application components are related with one another, and which metrics matter in gauging application performance.

The problem for IT organizations is to extract this type of "institutional knowledge" from a handful of experts to make it accessible and relevant to more people in IT Operations and Application Support. So whether you are talking about a complex approach like using UML diagrams, or something easier to grasp like calculating workload for your monitored elements, a model is simply an abstraction of best practices to make it easier to understand application performance.

Gartner underscores the importance of modeling in its analysis of the APM market. Its Magic Quadrant for Application Performance Monitoring discusses five functional dimensions, one of them being "runtime application architecture discovery, modeling, and display." This is the discovery of the hardware and software components of an application and the communication paths connecting these components together. Put even more simply, one of the key criteria for a good APM solution is to discover and create an accurate model.

Let's go through a brief example of why application modeling is so important for performance monitoring, and why Netuitive put so much effort on this in our recent Netuitive 6.0 release.

A typical Java application runs on an application server such as Tomcat, JBoss, WebSphere, or WebLogic. Because the application is distinct from the application server and JVM, it makes sense to model these as separate components.

The application has performance metrics such as response time and responses per time interval. The application server has JVM resource metrics such as CPU utilization and thread pool size.

Traditional "monolithic" models of performance combine metrics for an application and its application server into a single entity. But this monolithic approach makes it more difficult to model a scenario where multiple applications run on the same application server.

The monolithic approach is also not as intuitive if you want to quickly see if there is a problem with an application. It is straightforward to mark an application as "red" if its response time is increasing and to mark an application server as "red" if CPU utilization is high. But if resource and performance metrics are combined together, do you mark an application as red if CPU utilization is high? It isn't clear. High CPU utilization may not necessarily affect application performance, but you still want to know about it from a resource utilization perspective.

But a "monolithic" model is no longer appropriate for today's distributed enterprise applications. A modern Java application runs on multiple application servers in a clustered architecture. The cluster provides increased scalability and redundancy as more cluster nodes are added.

The most typical way to model an application cluster is as a cluster entity that contains multiple application servers.

This model focuses primarily on infrastructure, where one can determine if resources are evenly distributed among cluster nodes.

You can also adopt a more "application-centric" model by creating a cluster that contains only the applications.

This model provides more visibility into total application throughput and average response time. It focuses mainly on application performance throughout the entire cluster.

The bottom line is that a good model is essential for understanding and evaluating application performance. Today's distributed enterprise-class Java applications is more complex than ever, and depending on the "institutional knowledge" of a handful of application support experts is risky. Predictive IT analytics have now advanced to the point of eliminating this risk by condensing modeling best practices into templates that define which metrics matter, and by distilling the analysis of these metrics into composite health and workload indices.

To learn more about how this all works, check out our white paper on monitoring distributed Java applications.

More Stories By Richard Park

Richard Park is Director of Product Management at Netuitive. He currently leads Netuitive's efforts to integrate with application performance and cloud monitoring solutions. He has nearly 20 years of experience in network security, database programming, and systems engineering. Some past jobs include product management at Sourcefire and Computer Associates, network engineering and security at Booz Allen Hamilton, and systems engineering at UUNET Technologies (now part of Verizon). Richard has an MS in Computer Science from Johns Hopkins, an MBA from Harvard Business School, and a BA in Social Studies from Harvard University.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
The Founder of NostaLab and a member of the Google Health Advisory Board, John is a unique combination of strategic thinker, marketer and entrepreneur. His career was built on the "science of advertising" combining strategy, creativity and marketing for industry-leading results. Combined with his ability to communicate complicated scientific concepts in a way that consumers and scientists alike can appreciate, John is a sought-after speaker for conferences on the forefront of healthcare science,...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
DXWorldEXPO LLC announced today that Ed Featherston has been named the "Tech Chair" of "FinTechEXPO - New York Blockchain Event" of CloudEXPO's 10-Year Anniversary Event which will take place on November 12-13, 2018 in New York City. CloudEXPO | DXWorldEXPO New York will present keynotes, general sessions, and more than 20 blockchain sessions by leading FinTech experts.
Apps and devices shouldn't stop working when there's limited or no network connectivity. Learn how to bring data stored in a cloud database to the edge of the network (and back again) whenever an Internet connection is available. In his session at 17th Cloud Expo, Ben Perlmutter, a Sales Engineer with IBM Cloudant, demonstrated techniques for replicating cloud databases with devices in order to build offline-first mobile or Internet of Things (IoT) apps that can provide a better, faster user e...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of ...