Apache Authors: Pat Romanski, Liz McMillan, Elizabeth White, Christopher Harrold, Janakiram MSV

Related Topics: @DXWorldExpo, Java IoT, Machine Learning , @CloudExpo, Apache, SDN Journal

@DXWorldExpo: Article

So What? – Monitoring Hadoop Beyond Ganglia

Don’t just run Hadoop jobs at scale, run them efficiently and at scale

Over the last couple of months I have been talking to more and more customers who are either bringing their Hadoop clusters into production or have already done so and are now getting serious about operations. This leads to some interesting discussions about how to monitor Hadoop properly and one thing pops up quite often: Do they need anything beyond Ganglia? If yes, what should they do beyond it?

The Basics
As in every other system, monitoring in a Hadoop environment starts with the basics: System Metrics - CPU, Disk, Memory you know the drill. Of special importance in a Hadoop system is a well-balanced cluster; you don't want to have some nodes being much more (or less) utilized then others. Besides CPU and memory utilization, Disk utilization and of course I/O throughput is of high importance. After all the most likely bottleneck in a Big Data system is I/O - either with ingress (network and disk), moving data around (e.g., MapReduce shuffle on the network) and straightforward read/write to disk.

The problem in a Hadoop system is of course its size. Nothing new for us, some of our customers monitor well beyond 1000+ JVMs with CompuwareAPM. The "advantage" in a Hadoop system is its relative conformity - every node looks pretty much like the other. This is what Ganglia leverages.

Cluster Monitoring with Ganglia
What Ganglia is very good at is providing an overview over how a cluster is utilized. The load chart is particularly interesting:

This chart shows the CPU load on a 1000 Server cluster that has roughly 15.000 CPUs

It tells us the number of available cores in the system and the number of running processes (in theory a core can never handle more than one process at a time) and the 1-min load average. If the system is getting fully utilized the 1-min load average would approach the total number of CPUs. Another view on this is the well-known CPU utilization chart:

CPU Utilization over the last day. While the utilization stays well below 10% we see a lot of I/O wait spikes.

While the load chart gives a good overall impression of usage, the utilization tells us the story of how the CPUs are used. While typical CPU charts show a single server, Ganglia specializes in showing whole clusters (the picture shows CPU usage of a 1000 machine cluster). In the case of the depicted chart we see that the CPUs are experiencing a lot of I/O wait spikes, which points toward heavy disk I/O. Basically it seems the disk I/O is the reason that we cannot utilize our CPU better at these times. But in general our cluster is well underutilized in terms of CPU.

Trends are also easy to understand, as can be seen in this memory chart over a year.

Memory capacity and usage over a year

All this looks pretty good, so what is missing? The "so what" and "why" is what is missing. If my memory demand is growing, I have no way of knowing why it is growing. If the CPU chart tells me that I spend a lot of time waiting, it does not tell what to do, or why that is so? These questions are beyond the scope of Ganglia.

What about Hadoop specifics?
Ganglia also has a Hadoop plugin, which basically gives you access to all the usual Hadoop metrics (unfortunately a comprehensive list of Hadoop metrics is really hard to find, appreciate if somebody commented the link). There is a good explanation on what is interesting on Edward Caproli's page: JoinTheGrid. Basically you can use those metrics to monitor the capacity and usage trends of HDFS and the NameNodes and also how many jobs, mappers and reducers are running.

Capacity of the DataNodes over time

Capacity of the Name Nodes over time

The DataNode Operations give me an impression of I/O pressure on the Hadoop cluster

All these charts can of course be easily built in any modern monitoring or APM solution like CompuwareAPM, but Ganglia gives you a simple starting point; and it's Free as in Beer.

What's missing again is the so what? If my jobs are running a lot longer than yesterday, what should I do? Why do they run longer? A Hadoop expert might dig into 10 different charts around I/O and Network, spilling, look at log files among other things and try an educated guess as to what might be the problem. But we aren't all experts, neither do we have the time to dig into all of these metrics and log files all the time.

This is the reason that we and our customers are moving beyond Ganglia - to solve the "Why" and "So What" within time constraints.

Beyond the Basics #1 - Understanding Cluster Utilization
A use case that we get from customers is that they want to know which users or which pools (in case of the fair scheduler) are responsible for how much of the cluster utilization. LinkedIn just released White Elephant, a tool that parses MapReduce logs and builds some nice dashboards and shows you which of your users occupy how much of your cluster. This is of course based on log file analysis and thus okay for analysis but not for monitoring. With proper tools in place we can do the same thing in near real time.

The CPU Usage in the Hadoop Cluster on per User basis

In this example I wanted to monitor which user consumed how much of my Amazon EMR cluster. If we see a user or pool that occupies a lot of the cluster we can course also see which jobs are running and how much of the cluster they occupy.

The CPU Usage in the Hadoop Cluster on per Job basis

And this will also tell us if that job has always been there, and just uses a lot more resources now. This would be our cue to start analyzing what has changed.

Beyond the Basics #2 - Understanding why my jobs are slow(er)
If we want to understand why a job is slow we need to look at a high-level break down first.

In which phase of the map reduce do we spend the most time, or did we spend more time than yesterday? Understanding these timings in context with the respective job counters, like Map Input or Spilled Records, helps us understand why the phase took longer.

Overview of the time spent in different phases and the respective input/output counters

At this point we will already have a pretty good idea as to what happened. We either simply have more data to crunch (more input data) or a portion of the MapReduce job consumes more CPU (code change?) or we spill more records to disk (code change or Hadoop config change?). We might also detect an unbalanced cluster in the performance breakdown.

This job is executing nearly exclusively on a single node instead of distributing

In this case we want to check whether all the involved nodes processed the same amount of data

Here we see that there is a wide range from minimum, average to maximum on mapped input and output records. The data is not balanced

or if the difference can again be found in the code (different kinds of computations). If we are running against HBase we might of course have an issue with HBase performance or distribution.

At the beginning of the job only a single HBase region Server consumes CPU while all others remain idle

On the other hand, if a lot of mapping time is spent in the garbage collector then you should maybe invest in larger JVMs.

The Performance Breakdown of this particular job shows considerable time in GC suspension

If spilling data to disk is where we spend our time, we should take a closer look at that phase. It might turn out that all of our time is spent on disk wait.

If the Disk were the bottleneck we would see it on disk I/O here

Now if disk write is our bottleneck, then really the only thing that we can do is reduce the map output records. Adding a combiner will not reduce the disk write (it will actually increase it, read here). In other words combining only optimizes the shuffle phase, thus the amount of data sent over the network, but not spill time!!

And at the very detailed level we can look at single task executions and understand in detail what is really going on.

The detailed data about each Map, Reduce Task Atttempt as well as the spills and shuffles

Ganglia is a great tool for high-level monitoring of your Hadoop cluster utilization, but it is not enough. The fact that everybody is working on additional means to understand the Hadoop cluster (Hortonworks with Ambari, Cloudera with their Manager, LinkedIn with White Elephant, the Star Fish project...) shows that there is a lot more needed beyond simple monitoring. Even those more advanced monitoring tools are not always answering the "why" though, which is what we really need to do. This is where the Performance Management discipline can add a lot of value and really help you get the best out of your Hadoop cluster. In other words don't just run Hadoop jobs at scale, run them efficiently and at scale!

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
"There's plenty of bandwidth out there but it's never in the right place. So what Cedexis does is uses data to work out the best pathways to get data from the origin to the person who wants to get it," explained Simon Jones, Evangelist and Head of Marketing at Cedexis, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial C...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term.
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
With privacy often voiced as the primary concern when using cloud based services, SyncriBox was designed to ensure that the software remains completely under the customer's control. Having both the source and destination files remain under the user?s control, there are no privacy or security issues. Since files are synchronized using Syncrify Server, no third party ever sees these files.
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
In his session at 21st Cloud Expo, Carl J. Levine, Senior Technical Evangelist for NS1, will objectively discuss how DNS is used to solve Digital Transformation challenges in large SaaS applications, CDNs, AdTech platforms, and other demanding use cases. Carl J. Levine is the Senior Technical Evangelist for NS1. A veteran of the Internet Infrastructure space, he has over a decade of experience with startups, networking protocols and Internet infrastructure, combined with the unique ability to it...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, shared examples from a wide range of industries – including en...
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
delaPlex is a global technology and software development solutions and consulting provider, deeply committed to helping companies drive growth, revenue and marketplace value. Since 2008, delaPlex's objective has been to be a trusted advisor to its clients. By redefining the outsourcing industry's business model, the innovative delaPlex Agile Business Framework brings an unmatched alliance of industry experts, across industries and functional skillsets, to clients anywhere around the world.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Headquartered in Plainsboro, NJ, Synametrics Technologies has provided IT professionals and computer systems developers since 1997. Based on the success of their initial product offerings (WinSQL and DeltaCopy), the company continues to create and hone innovative products that help its customers get more from their computer applications, databases and infrastructure. To date, over one million users around the world have chosen Synametrics solutions to help power their accelerated business or per...