Welcome!

Apache Authors: Elizabeth White, Pat Romanski, Liz McMillan, Christopher Harrold, Janakiram MSV

Blog Feed Post

Ryan Sheftel: "R on the Trading Desk"

by Joseph Rickert In a post last week, I offered some first impressions about R/Finance 2013. Apparently, I was way off in estimating that 30% of the attendees were academics. The R/Finance organizers were quick to point out that percentage of academics attending the conference has been a constant 10% over the years; and this year was no different. Why is this important? Well, first off it points to the level of sophistication of the industry attendees who came to hear talks that were mostly very technical, both with respect to the level of mathematics involved and R usage. And, perhaps it explains why there was very little hype at the conference. There were no exagerated claims for Hadoop or any other technology, and discussions involving big data were very "matter of fact". When it comes to technology, the quants are a sober lot, pragmatic, competent and comfortable with the latest technology trends. The opening keynote presentation: R on the trading Desk (PDF) by Ryan Sheftel, Managing Director of Fixed Income Division at Credit Suisse, underscored this last point. Ryan, an engaging and experienced speaker, provided some extraordinary insight into the stance quants and traders take toward technology: By way of background, Ryan noted that fixed income markets which provide immediate liquidity between buyers and sellers are decentralized. Traders are constantly taking on risk which they try to mitigate by predicting what their clients are going to do. Ryan noted that machine learning ideas, very often implemented in R, have been a “great boon” to the industry. Before the financial crisis, the quants were focused on building complex models to price options, now they are focused on prediction using time series models. These days, the technology on a fixed income desk at Credit Suisse includes: SQL and data sources such as OneTick R and time series libraries such as zoo and xts R libraries for reshaping and manipulating data RStudio’s integrated development environment This combination of technology has helped to “lower the bar to accessibility” meaning timely and high quality models. More people are answering their own questions, testing their own code and doing version control. As a consequence of this, the barrier between quants and traders is breaking down. Both groups are using the same tools and, if I understood Ryan correctly, there are even expectations that traders will do their own unit testing! The idea is to make quality assurance part of the creative process. It is expected that more lines of code will be devoted to testing than calculations and that QA is the responsibility of the person who had the idea. Ryan noted that this way of working and the kinds of tools available are affecting the kinds of people being hired. Although Ryan never used the term, it is clear that at least one organization within Credit Suisse is building its future with "data scientists". Ryan’s talk covered much more ground than I can explore here; much more even than his slides indicate. However, I would be remiss not to mention Ryan's challenges for R and his warning against complacency. R is apparently deeply entrenched at Credit Suisse, It is now an “acceptable” tool at the bank and quants and traders write their own proprietary packages. However, a disaster linking R to a big loss, such as the Excel error that apparently contributed to the London whale debacle, could dislodge it. In Ryan’s opinion it is just "too easy to do some things" in R. Ryan stated that programming rigor around the language and better error tracking would be very useful here. This is the classic tradeoff between freedom and security, between providing individual users with powerful feature-rich tools and limiting the damage a careless individual can cause. These kinds of concerns help to make the case that some organizations could benefit from a managed distribution of the R language. As for the warning against complacency: Ryan noted that Python with the Pandas library also has a place on the trading desk. All of the presentations for R/Finance 2013 are online here. Many thanks to the speakers and the conference organizers for making them available. Many of the presentations have snippets of R code that are helpful following the math. (See for example the presentations of Bernhard Pfaff and Sanjiv Das.) For those of you who still want more; the cumulative collection of R/Finance presentations is becoming quite a online library. Have a look at the presentations from previous years: R/Finance 2009 R/Finance 2010 R/Finance 2011 R/Finance 2012 

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...