Apache Authors: Carmen Gonzalez, Liz McMillan, Elizabeth White, Pat Romanski, Christopher Harrold

Related Topics: Java IoT, Industrial IoT, Microservices Expo, Open Source Cloud, @CloudExpo, Apache

Java IoT: Article

Tracing Black Boxes II: Monitoring Solr

Providing insight into Apache Solr instances by correlating individual traces with JMX metrics

Your site is indexed on Google, but that doesn't mean you're done with search. Content-rich websites provide native search functionality to keep users engaged, maintain visual consistency, and provide content-aware filtering. But it's very hard to implement an effective, scalable search system, which is why Apache Solr is just about the most popular ‘black box' in web application infrastructure. This Lucene-backed search appliance has seen wide adoption due to its performance, reliability, and ease of deployment. In fact, it's become so widely used that many Solr deployments are managed by people who have no other exposure to running Java applications. Documents go in, indexed RESTful search comes out - that is, until something breaks.

TraceView can provide insight into Apache Solr instances by correlating individual traces with JMX metrics, such as the rate of requests over the past 5 minutes. Even at a very low overall volume, an increased traffic rate is already increasing request latency.

TraceView can provide insight into Apache Solr instances by correlating individual traces with JMX metrics, such as the rate of requests over the past 5 minutes. Even at a very low overall volume, an increased traffic rate is already increasing request latency.

Unlike most web application front-ends, Solr is a complex, stateful application that contains persistent objects, runs background indexing processes, and maintains multiple tiers of caches. There are a lot of ways to deploy and configure Solr, and that means there are a lot of ways to make mistakes. But even when you have everything up and running, there's always the lingering question of whether you could be getting more out of your Solr instances (or reducing the number of them!).

One of the best ways to get insight into Solr's internal abstractions - such as cores, handlers, and components - is to monitor them directly via JMX. I've previously written about using JMX metrics to keep tabs on JVM memory internals, but JMX is a common API for collecting data from your Java applications and any application can make use of it. Because of this it's been widely adopted in the Java ecosystem to centralize the provision of application-specific performance data.

Solr provides JMX metrics on a variety of internals, such as queryResultCache.


Solr provides JMX metrics on a variety of internals, such as queryResultCache.


Solr exposes hundreds of JMX metrics across dozens of categories, and efficient use of them can help you delve into Solr performance in a variety of ways. Some metrics are better for providing a high-level view of Solr's overall workflow. The queryResultCachecategory, pictured above, provides a snapshot of how often your data was successfully cached, as well as how often cache entries had to be evicted due to insufficient space. Other metric categories are more granular and provide detail at the level of classes, or even objects. An update request will be routed to a different handler depending on whether the data was provided in XML, CSV, or JSON; each of these update handlers exposes metrics independently, like how long it has been running and the number of errors.

JMX metrics can even provide insight into advanced Solr use cases, like modifying result scoring to permit n-dimensional spatial searches or customizing results based on user data stored in Redis. Even without adding custom JMX metrics, Solr will report enough data to allow you to separately track the effectiveness of these custom searches relative to more traditional queries.

Let's look at a practical example. You just got paged because half of your distributed Solr cluster lost connectivity in a widespread EC2 outage. It looks like it might last a while, so you decide to add additional capacity in one of the functioning availability zones. Rather than spending time re-indexing your content, you decide to replicate your existing Solr data to the new servers. Using the high-level metrics provided byReplicationHandler, you determine that replication is proceeding smoothly. Halfway through your second replication, though, you realize that the first replicated server is taking five times as long as your original servers to respond to the same user queries, even though it's running on the same hardware. Checking out the cache metrics for a specific search handler, it looks like the hit ratios on its caches are abysmal - but wait, what's actually in those caches? After checking the metrics for that node's active Searcher instance, you realize you didn't set up Solr to warm the cache - it was starting off empty! Now you know to make a quick configuration change next time you spin up an instance so that the first users routed to it will have acceptable performance.

So, that sounds awesome - but how do you do it? The easiest approach is to view Solr's JMX statistics through its web interface (in Solr 3.x,
it's at /solr/admin/stats.jsp, while in Solr 4.x it's available at a collection-based URL like /solr/#/collection1/plugins/). However, web access won't be an option for most deployments. Alternately, you could use remote jconsole, but that requires either a complex remote configuration that's a tremendous hassle to set up or the glacially slow option of SSH X11 forwarding (e.g., ssh -X solr jconsole).

In practice, those approaches all suck. Solr is stunningly verbose: it exposes hundreds of JMX metrics out of the box, and that number expands quickly as you add additional handlers and components. Purpose-built JMX monitoring tools like jconsole are great for browsing the available metrics to see what's available, but they're horrible for pulling out the ones you want in a hurry. They also allow ‘write' operations like initiating garbage collection or clearing caches - definitely not something you want to give out to every developer!

TraceView automatically monitors the JMX metrics of every node involved in this distributed Solr Cloud trace.


TraceView automatically monitors the JMX metrics of every node involved in this distributed Solr Cloud trace.

On a day to day basis, it's more common to read JMX metrics via automated, ‘read-only' monitoring tools like NagiosGanglia, or AppNeta TraceView. These tools not only present a number of metrics at once, but they also generally let you filter down to a meaningful subset of the hundreds of lines exposed by Solr. On the other hand, "health check"-style metrics aren't necessarily the only way to look the problem. Each request has a number of metrics it can generate, and bringing together these data sources in one application has some real advantages. Looking at an individual request can tell you exactly what went wrong, it's often the context of JMX data that says why. Examining the concurrent host activity can disambiguate between whether a pause was due to a garbage collection event in the JVM or an overloaded document cache in Solr forcing additional disk access.

Next time, we'll talk about how TraceView captures these request-based metrics directly from the Solr internals. In the meantime, if you've got a Solr installation, sign up for your free account, put in on that server, and take a look inside that black box!

More Stories By James Meickle

James started as a hobbyist web developer, even though his academic background is in social psychology and political science. Lately his interests as a professional Drupal developer have migrated towards performance, security, and automation. His favorite languages is Python, his favorite editor is Sublime, and his favorite game is Dwarf Fortress.

IoT & Smart Cities Stories
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessio...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...