Welcome!

Apache Authors: Elizabeth White, Pat Romanski, Liz McMillan, Christopher Harrold, Janakiram MSV

Related Topics: @DXWorldExpo, Microservices Expo, Containers Expo Blog, @CloudExpo, Apache, SDN Journal

@DXWorldExpo: Blog Feed Post

Big Data = Dropping the Big One?

Big Data is certainly both marvelous and terrifying

Editor’s note: This article was first published on Analyst One, a site focused on analysts and topics of interest to the analytical community.-bg

Eminent network scientist Laszlo Barabasi recently penned an op-ed calling on fellow scientists to spearhead the ethical use of big data. Comparing big data to the atom bomb, Barabasi persuasively argued that the technology and methodologies he and other social network theorists had created had far outstripped societal controls on its use.

Barabasi’s op-ed is part of a growing backlash against big data technologies and methodologies While Barabasi and historian of science George Dyson have the historical perspective, technical insight, and scientific stature to write insightfully about the problems of pervasive data collection and algorithms that structure human decisions, other criticisms have been less than edifying. Frustrated Harvard Business Review blogger Andrew McAfee recently called on pundits to “stop sounding ignorant about big data.” Big data, McAfee points out, is held to unrealistic standards and often the victim of strawmanning. Critics expect big data to eliminate uncertainty (spoiler: it doesn’t), falsely overestimate the power of qualitative thinking, make broad criticisms against quantification itself, and overestimate the willingness of big data advocates to automate important decisions. Listening to some critics talk, you’d think that Palantir or Recorded Future = Skynet.

While insightful in many aspects, Barabasi’s op-ed also fails to fully investigate the real implications of his Hadoop ~ ICBM analogy. Many scientists sought to influence the use of nuclear weapons, understandably believing themselves the most well-informed about the dangers they posed. However, even the most effective of their well-meaning efforts were superseded by Cold War politics. It is within the American political system — teetering between fear of terrorism, fear of big government, love of capitalism, and fear of capitalism — that big data’s societal impact will be decided. And if the rising tide of anti-science sentiment is any proof, politicians couldn’t care less about science or the men and women who practice it.  Scientists are no longer viewed as unimpeachable figures of authority — and to some extent it’s doubtful they ever really were in predictably populist America.

Second, if big data is a weapon of mass destruction, you aren’t going to see Hans Blix suddenly busting down the doors of startups for snap inspections of Apache software or NoSQL. The only thing inherently more “dual use” than offensive cyber tools are big data technologies and methodologies. They are quickly becoming an integral part of modern business, academic research, and intelligence practice. Barabasi and others are correct that in a world in which the individual is more vulnerable than ever to government and corporate usage of data science, we arguably should try to mitigate current and potential harm. The problem with analogizing data to nukes (besides the fact that Google never destroyed a Japanese city) is that the former are clumsy weapons of last resort that even bitter enemies had a stake in controlling and the latter are ubiquitous aspects of modern life.

While Barabasi and others may have pioneered the techniques industry and government demand, big data has long since ceased to be a purely academic endeavor. The men and women who use them mostly aren’t scientists. Big data is heavily driven by corporate and government needs. Even the most talented PhDs often leave the academy to pursue higher salaries and greater freedom in the corporate world. Perhaps the best big data analogy is not to the atomic science of Einstein or Oppenheimer, but to the mathematics of Newton, Leibnitz, and Fourier. Were they alive today, even these eminent scientists would be powerless to prevent their mathematics from being used for military operations research on how to kill more efficiently or from being inputted into faulty and investor-bankrupting financial models. A Taylor Series or a differential equation — once out in the wild — belongs to anyone with a pen, paper, and calculator. Likewise, with open-source tools like Python machine learning library scikit-learn, anyone with the requisite technical training can utilize some canonical data science techniques.

Big data is certainly both marvelous and terrifying. It offers the opportunity to make money, make new scientific discoveries, and enhance political endeavors from development to national security. It also puts the individual at the mercy of companies and governments. But at the end of the day it is “neither a atomic bomb nor a holy grail.” It should neither be held to unrealistic standards nor feared as a weapon of mass destruction. And everyone who cares about the ethics of data — from the scientist to the layperson — must understand that control over its use is a function of the messy and dysfunctional domestic political scene and the anarchic international system.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder of Crucial Point and publisher of CTOvision.com

IoT & Smart Cities Stories
Headquartered in Plainsboro, NJ, Synametrics Technologies has provided IT professionals and computer systems developers since 1997. Based on the success of their initial product offerings (WinSQL and DeltaCopy), the company continues to create and hone innovative products that help its customers get more from their computer applications, databases and infrastructure. To date, over one million users around the world have chosen Synametrics solutions to help power their accelerated business or per...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
SYS-CON Events announced today that IoT Global Network has been named “Media Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. The IoT Global Network is a platform where you can connect with industry experts and network across the IoT community to build the successful IoT business of the future.
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...