Welcome!

Apache Authors: Liz McMillan, Carmen Gonzalez, Elizabeth White, Pat Romanski, Christopher Harrold

Related Topics: @DXWorldExpo, Java IoT, Microservices Expo, @CloudExpo, Apache, SDN Journal

@DXWorldExpo: Article

Database to Implement Big Data Real-Time Application

Database will be capable for real-time application if performance is improved

The Big Data Real-time Application is a scenario to return the computation and analysis results in real time even if there are huge amounts of data. This is an emerging demand on database applications in recent years.

In the past, because there wasn't a lot of data, the computation was simple, and few parallelisms, the pressure on the database wasn't great. A high-end or middle-range database server or cluster could allocate enough resources to meet the demand. Moreover, in order to rapidly and parallel access to the current business data and the historic data, users also tended to arrange the same database server for both the query analysis system and the production system. This way, the database cost could be lowered, the data management streamlined, and the parallelism ensured to some extent. We are in the prime time of database real-time application development.

In recent years, due to the data explosion, and more diversified and complex applications, new changes have occured to the database system. The obvious change is that the data is growing at an accelerated pace. Applications are increasingly complex, and the number of concurrent access makes no exception. In this time of big data, the database is under increasing pressure, posing a serious challenge to the real-time application.

The first challenge is the real-timeness. With the heavy workload on the database, the database performance drops dramatically, the response is sluggish, and user experience is going from bad to worse quickly. The normal operation of the critical business system has been affected seriously. The real-time application has actually become the half real-time.

The second challenge is the cost. In order to alleviate the performance pressure, users have to upgrade the database. The database server is expensive, so are the storage media and user license agreement. Most databases require additional charges on the number of CPUs, cluster nodes, and size of storage space. Due to the constant increase of data volume and pressure on database, such upgrade will be done at intervals.

The third challenge is the database application. The increasing pressure on database can seriously affect the core business application. Users would have to off-load the historic data from the database. Two groups of database servers thus come into being: one group for storing the historical data, and the other group for storing the core business data. As we know, the native cross-database query ability of databases are quite weak, and the performance is very low. To deliver the latest and promptest analysis result on time, applications must perform the cross-database query on the data from both groups of databases. The application programing would be getting ever more complex.

The fourth challenge is the database management. In order to deliver the latest and promptest analysis result on time, and avoid the complex and inefficient cross-database programming, most users choose to accept the management cost and difficulty increase - timely update the historic library with the latest data from the business library. The advanced edition of database will usually provide the similar subscription & distribution or data duplicate functions.

The real-time big data application is hard to progress when beset with these four challenges.

How to guarantee the parallelism of the big data application? How to reduce the database cost while ensuring the real-timeness? How to implement the cross-database query easily? How to reduce the management cost and difficulty? This is the one of hottest topics being discussed among the CIOs or CTOs.

esProc is a good remedy to this stubborn headache. It is the database middleware with the complete computational capability, offering  the support for the computing no matter in external storage, across databases, or parallel. The combination of database and esProc can deliver enough capability to solve the four challenges to big data applications.

esProc supports for the computation over files from external storage and the HDFS. This is to say, you can store a great volume of historical data in several cheap hard disks of average PCs, and leave them to esProc to handle. By comparison, database alone can only store and manage the current core business data. The goal of cutting cost and diverting computational load is thus achieved.

esProc supports the parallel computing, so that the computational pressure can be averted to several cheap node machines when there are heavy workload and a great many of parallel and sudden access requests. Its real-timeness is equal or even superior to that of the high-end database.

esProc offers the complete computational capability especially for the complex data computing. Even it alone can handle those applications involving the complex business logics. What's even better, esProc can do a better job when working with the database. It supports the computations over data from multiple data sources, including various structural data, non-structural data, database data, local files, the big data files in the HDFS, and the distributed databases. esProc can provide a unified JDBC interface to the application at upper level. Thus the coupling difficulty between big data and traditional databases is reduced, the limitation on the single-source report removed, and the difficulty of the big data application reduced.

With the seamless support for the combined computation over files stored in external storage and the database data, users no longer need the complex and expensive data synchronization technology. The database only focus on the current data and core business applications, while esProc enable users to access both the historic data in external storage and the current business data in database. By doing so, the latest and promptest analysis result can be delivered on time.

The cross-database computation and external storage computation capability of esProc can ensure the real-time query while alleviating the pressure on database. Under the assistance of esProc, the big data real-time application can be implemented efficiently at relatively low cost.

More Stories By Jessica Qiu

Jessica Qiu is the editor of Raqsoft. She provides press releases for data computation and data analytics.

IoT & Smart Cities Stories
The platform combines the strengths of Singtel's extensive, intelligent network capabilities with Microsoft's cloud expertise to create a unique solution that sets new standards for IoT applications," said Mr Diomedes Kastanis, Head of IoT at Singtel. "Our solution provides speed, transparency and flexibility, paving the way for a more pervasive use of IoT to accelerate enterprises' digitalisation efforts. AI-powered intelligent connectivity over Microsoft Azure will be the fastest connected pat...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
As you know, enterprise IT conversation over the past year have often centered upon the open-source Kubernetes container orchestration system. In fact, Kubernetes has emerged as the key technology -- and even primary platform -- of cloud migrations for a wide variety of organizations. Kubernetes is critical to forward-looking enterprises that continue to push their IT infrastructures toward maximum functionality, scalability, and flexibility. As they do so, IT professionals are also embr...
CloudEXPO has been the M&A capital for Cloud companies for more than a decade with memorable acquisition news stories which came out of CloudEXPO expo floor. DevOpsSUMMIT New York faculty member Greg Bledsoe shared his views on IBM's Red Hat acquisition live from NASDAQ floor. Acquisition news was announced during CloudEXPO New York which took place November 12-13, 2019 in New York City.
In an age of borderless networks, security for the cloud and security for the corporate network can no longer be separated. Security teams are now presented with the challenge of monitoring and controlling access to these cloud environments, at the same time that developers quickly spin up new cloud instances and executives push forwards new initiatives. The vulnerabilities created by migration to the cloud, such as misconfigurations and compromised credentials, require that security teams t...
The graph represents a network of 1,329 Twitter users whose recent tweets contained "#DevOps", or who were replied to or mentioned in those tweets, taken from a data set limited to a maximum of 18,000 tweets. The network was obtained from Twitter on Thursday, 10 January 2019 at 23:50 UTC. The tweets in the network were tweeted over the 7-hour, 6-minute period from Thursday, 10 January 2019 at 16:29 UTC to Thursday, 10 January 2019 at 23:36 UTC. Additional tweets that were mentioned in this...
The term "digital transformation" (DX) is being used by everyone for just about any company initiative that involves technology, the web, ecommerce, software, or even customer experience. While the term has certainly turned into a buzzword with a lot of hype, the transition to a more connected, digital world is real and comes with real challenges. In his opening keynote, Four Essentials To Become DX Hero Status Now, Jonathan Hoppe, Co-Founder and CTO of Total Uptime Technologies, shared that ...
After years of investments and acquisitions, CloudBlue was created with the goal of building the world's only hyperscale digital platform with an increasingly infinite ecosystem and proven go-to-market services. The result? An unmatched platform that helps customers streamline cloud operations, save time and money, and revolutionize their businesses overnight. Today, the platform operates in more than 45 countries and powers more than 200 of the world's largest cloud marketplaces, managing mo...
When Enterprises started adopting Hadoop-based Big Data environments over the last ten years, they were mainly on-premise deployments. Organizations would spin up and manage large Hadoop clusters, where they would funnel exabytes or petabytes of unstructured data.However, over the last few years the economics of maintaining this enormous infrastructure compared with the elastic scalability of viable cloud options has changed this equation. The growth of cloud storage, cloud-managed big data e...
Your applications have evolved, your computing needs are changing, and your servers have become more and more dense. But your data center hasn't changed so you can't get the benefits of cheaper, better, smaller, faster... until now. Colovore is Silicon Valley's premier provider of high-density colocation solutions that are a perfect fit for companies operating modern, high-performance hardware. No other Bay Area colo provider can match our density, operating efficiency, and ease of scalability.