Welcome!

Apache Authors: Carmen Gonzalez, Liz McMillan, Elizabeth White, Pat Romanski, Christopher Harrold

Related Topics: @DXWorldExpo, Java IoT, Microservices Expo, @CloudExpo, Apache, SDN Journal

@DXWorldExpo: Article

Database to Implement Big Data Real-Time Application

Database will be capable for real-time application if performance is improved

The Big Data Real-time Application is a scenario to return the computation and analysis results in real time even if there are huge amounts of data. This is an emerging demand on database applications in recent years.

In the past, because there wasn't a lot of data, the computation was simple, and few parallelisms, the pressure on the database wasn't great. A high-end or middle-range database server or cluster could allocate enough resources to meet the demand. Moreover, in order to rapidly and parallel access to the current business data and the historic data, users also tended to arrange the same database server for both the query analysis system and the production system. This way, the database cost could be lowered, the data management streamlined, and the parallelism ensured to some extent. We are in the prime time of database real-time application development.

In recent years, due to the data explosion, and more diversified and complex applications, new changes have occured to the database system. The obvious change is that the data is growing at an accelerated pace. Applications are increasingly complex, and the number of concurrent access makes no exception. In this time of big data, the database is under increasing pressure, posing a serious challenge to the real-time application.

The first challenge is the real-timeness. With the heavy workload on the database, the database performance drops dramatically, the response is sluggish, and user experience is going from bad to worse quickly. The normal operation of the critical business system has been affected seriously. The real-time application has actually become the half real-time.

The second challenge is the cost. In order to alleviate the performance pressure, users have to upgrade the database. The database server is expensive, so are the storage media and user license agreement. Most databases require additional charges on the number of CPUs, cluster nodes, and size of storage space. Due to the constant increase of data volume and pressure on database, such upgrade will be done at intervals.

The third challenge is the database application. The increasing pressure on database can seriously affect the core business application. Users would have to off-load the historic data from the database. Two groups of database servers thus come into being: one group for storing the historical data, and the other group for storing the core business data. As we know, the native cross-database query ability of databases are quite weak, and the performance is very low. To deliver the latest and promptest analysis result on time, applications must perform the cross-database query on the data from both groups of databases. The application programing would be getting ever more complex.

The fourth challenge is the database management. In order to deliver the latest and promptest analysis result on time, and avoid the complex and inefficient cross-database programming, most users choose to accept the management cost and difficulty increase - timely update the historic library with the latest data from the business library. The advanced edition of database will usually provide the similar subscription & distribution or data duplicate functions.

The real-time big data application is hard to progress when beset with these four challenges.

How to guarantee the parallelism of the big data application? How to reduce the database cost while ensuring the real-timeness? How to implement the cross-database query easily? How to reduce the management cost and difficulty? This is the one of hottest topics being discussed among the CIOs or CTOs.

esProc is a good remedy to this stubborn headache. It is the database middleware with the complete computational capability, offering  the support for the computing no matter in external storage, across databases, or parallel. The combination of database and esProc can deliver enough capability to solve the four challenges to big data applications.

esProc supports for the computation over files from external storage and the HDFS. This is to say, you can store a great volume of historical data in several cheap hard disks of average PCs, and leave them to esProc to handle. By comparison, database alone can only store and manage the current core business data. The goal of cutting cost and diverting computational load is thus achieved.

esProc supports the parallel computing, so that the computational pressure can be averted to several cheap node machines when there are heavy workload and a great many of parallel and sudden access requests. Its real-timeness is equal or even superior to that of the high-end database.

esProc offers the complete computational capability especially for the complex data computing. Even it alone can handle those applications involving the complex business logics. What's even better, esProc can do a better job when working with the database. It supports the computations over data from multiple data sources, including various structural data, non-structural data, database data, local files, the big data files in the HDFS, and the distributed databases. esProc can provide a unified JDBC interface to the application at upper level. Thus the coupling difficulty between big data and traditional databases is reduced, the limitation on the single-source report removed, and the difficulty of the big data application reduced.

With the seamless support for the combined computation over files stored in external storage and the database data, users no longer need the complex and expensive data synchronization technology. The database only focus on the current data and core business applications, while esProc enable users to access both the historic data in external storage and the current business data in database. By doing so, the latest and promptest analysis result can be delivered on time.

The cross-database computation and external storage computation capability of esProc can ensure the real-time query while alleviating the pressure on database. Under the assistance of esProc, the big data real-time application can be implemented efficiently at relatively low cost.

More Stories By Jessica Qiu

Jessica Qiu is the editor of Raqsoft. She provides press releases for data computation and data analytics.

IoT & Smart Cities Stories
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessio...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...