Click here to close now.


Apache Authors: Liz McMillan, Craig Lowell, Jim Scott, AppDynamics Blog, Dana Gardner

Blog Feed Post

Hadoop & NoSQL – Friends, not frenemies (Published in SDTimes, January 7, 2014)

The term Big Data is an all-encompassing phrase that has various subdivisions addressing different needs of the customers. The most common description of Big Data talks about the four V’s: Volume, Velocity, Variety and Veracity.Volume represents terabytes to exabytes of data, but this is data at rest. Velocity talks about streaming data requiring milliseconds to seconds of response time and is about data in motion. Variety is about data in many forms: structured, unstructured, text, spatial, and multimedia. Finally, veracity means data in doubt arising out of inconsistencies, incompleteness and ambiguities.Hadoop is the first commercial version of Internet-scale supercomputing, akin to what HPC (high-performance computing) has done for the scientific community. It performs, and is affordable, at scale. No wonder it originated with companies operating at Internet scale, such as Yahoo in the 1990s, and then at Google, Facebook and Twitter.

In the scientific community, HPC was used for meteorology (weather simulation) and for solving engineering equations. Hadoop is used more for discovery and pattern matching. The underlying technology is similar: clustering, parallel processing and distributed file systems. Hadoop addresses the “volume” aspect of Big Data, mostly for offline analytics.

NoSQL products such as MongoDB address the “variety” aspect of Big Data: how to represent different data types efficiently with humongous read/write scalability and high availability for transactional systems operating in real time. The existing RDBMS solutions are inadequate to address this need with their schema rigidity and lack of scale-out solutions at low cost. Therefore, Hadoop and NoSQL are complementary in nature and do not compete at all.

Whether data is in NoSQL or RDBMS databases, Hadoop clusters are required for batch analytics (using its distributed file system and Map/Reduce computing algorithm). Several Hadoop solutions such as Cloudera’s Impala or Hortonworks’ Stinger, are introducing high-performance SQL interfaces for easy query processing.

Hadoop’s low cost and high efficiency has made it very popular. As an example, Sears’ process for analyzing marketing campaigns for loyalty club members used to take six weeks on mainframe, Teradata and SAS servers. The new process running on Hadoop can be completed weekly.
The Hadoop systems, at 200TB, cost about one-third of 200TB relational platforms. Mainframe costs have been reduced by more than US$500,000 per year while delivering 50x to 100x better performance on batch jobs. The volume of data on Hadoop is currently at 2PB. Sears uses Datameer, a spreadsheet-style tool that supports data exploration and visualization directly on Hadoop. It claims to develop interactive reports in three days, a process that use to take six to 12 weeks.

NoSQL products such as MongoDB are getting hugely popular in the developer community. They seamlessly blend with modern programming languages like JavaScript, Ruby and Python, thus imparting high coding velocity. This simplicity has made them very popular in a short amount of time.

With RDBMS, there was impedance mismatch when an object-oriented programming model had to map to the row-column structure of the database (like translating Swahili to French). The rich data model can handle varieties of data with full indexing and ad hoc query capabilities.

The other reason is its ability to scale horizontally over commodity servers and provide massively parallel processing. This aspect is similar to Hadoop’s distributed architecture. However, NoSQL has to deal with the operational aspects of production databases running on premise or in the cloud, whereas Hadoop basically operates in offline batch mode for analysis.

NoSQL is used by large enterprises to build “systems of engagement.” Enterprise IT has spent decades building “systems of record” to run their business—essentially technology that contains a database. Now, CIOs are under pressure to build systems of engagement in which the focus is on using modern technology and the Internet to better communicate internally and externally.

One such system of engagement was recently built at MetLife, the 145-year old insurance company. The goal was to provide a 360-degree view of the customer (switching from a policy-centric view to a customer-centric view), whose information was scattered across 20 legacy systems of record. This way, any agent at MetLife can get a complete picture of a customer’s activities using a mobile device, anytime, from anywhere.

The entire system was developed and deployed in three months using the MongoDB platform. The reasons for the rapid deployment were attributed to MongoDB’s flexible data model, linear scaling via its sharding architecture, high coding velocity, and iterative development using JSON.NoSQL and Hadoop have a peaceful coexistence. MongoDB, for example, offers a Hadoop connection pipe for easy movement of data between the two stores. Similarly, Oracle offers a connection for data movement between Hadoop and the Oracle DB. Future additions to Hadoop such as YARN and Tez are aimed at extending it for real-time data loading and queries, but not to solve the needs of mission-critical production systems (the domain of NoSQL).Jnan Dash is a technology visionary and executive consultant in Silicon Valley. He spent 10 years at Oracle and was the Group Vice President of Systems Architecture and Technology. Prior to joining Oracle, he spent 16 years at IBM in various positions, including in development of the DB2 family of products and leading IBM’s database architecture and technology efforts.

Read the original blog entry...

More Stories By Jnan Dash

Jnan Dash is Senior Advisor at EZShield Inc., Advisor at ScaleDB and Board Member at Compassites Software Solutions. He has lived in Silicon Valley since 1979. Formerly he was the Chief Strategy Officer (Consulting) at Curl Inc., before which he spent ten years at Oracle Corporation and was the Group Vice President, Systems Architecture and Technology till 2002. He was responsible for setting Oracle's core database and application server product directions and interacted with customers worldwide in translating future needs to product plans. Before that he spent 16 years at IBM. He blogs at

@ThingsExpo Stories
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.