Click here to close now.

Welcome!

Apache Authors: Carmen Gonzalez, Pat Romanski, Ruxit Blog, Sematext Blog, Nikita Ivanov

Blog Feed Post

Book review: "Doing Data Science" by Rachel Schutt and Cathy O'Neil

by Joseph Rickert Every once in a while a single book comes to crystallize a new discipline. If books still have this power in the era of electronic media, "Doing Data Science, Straight Talk from the Frontline" by Rachel Schutt and Cathy O’Neil: O'Reilly, 2013 might just be the book that defines data science. "Doing Data Science", which is based on a course that Rachel taught at Columbia University and to which Cathy contributed, is ambitious and multidimensional. It presents data science in all of its messiness as an open-ended practice that is coalescing around an expanding class of problems; problems which are yielding to an interdisciplinary approach that includes ideas and techniques from statistics, computer science, machine learning, social science and other disciplines. The book is neither a statistics nor a machine learning text, but there are plenty of examples of statistical models and machine learning algorithms. There is enough R code in the text to get a beginner started on real problems with tools that are immediately useful. There is Python code, a bash shell script, mention of JSON and a down to earth discussion of Hadoop and MapReduce that many should find valuable. My favorite code example is the bash script (p 105) that fetches an Enron spam file and performs some basic word count calculations. Its almost casual insertion into the text, without fanfare and little explanation, provides a low key example of the kinds of baseline IT/ programmer skills that a newly minted statistician must acquire in order to work effectively as a data scientist. "Doing Data Science" is fairly well balanced in its fusion of the statistics and machine learning world views, but Rachel’s underlying bias as a PhD statistician comes through when it counts. The grounding in linear models and the inclusion of time series models establish the required inferential skills. The discussion of causality shows how statistical inference is essential to obtaining a deep understanding of how things really work, and the chapter on epidemiology provides a glimpse into just how deep and difficult are the problems that statisticians have been wrestling with for generations. (I found the inclusion of this chapter in a data science book to be a delightful surprise.) It is not only the selection of material, however, that betrays the book's statistical bias. When the authors take on the big questions their language indicates a statistical mindset. For example, in the discussion following "In what sense does data science deserve the word “science” in its name?" (p114) the authors write: “Every design choice you make can be formulated as an hypothesis, against which you will use rigorous testing and experimentation to validate or refute”. This is the language of a Neyman/Pearson trained statistician trying to pin down the truth. It stands in stark contrast with the machine learning viewpoint espoused in a quote by Kaggle’s Jeremy Howard who, when asked “Can you see any downside to the data-driven, black-box approach that dominates on Kaggle?”, replies: Some people take the view that you don’t end up with a richer understanding of the problem. But that’s just not true: The algorithms tell you what’s important and what’s not. You might ask why those things are important, but I think that’s less interesting. You end up with a predictive model that works. There is not too much to argue about there. So, whether you are doing science or not might just be in your intentions and point of view. Schutt and O’Neil do a marvelous job of exploring the tension between the quest for understanding and and the blunt success of just getting something that works. An unusual aspect of the book is its attempt to understand data science as a cultural phenomenon and to place the technology in a historical and social context. Most textbooks in mathematics, statistics and science make no mention of how things came to be. Their authors are just under too much pressure to get on with presenting the material to stop and and discuss “just what were those guys thinking?”. But Schutt and O’Neill take the time, and the book is richer for it. Mike Driscoll and Drew Conway, two practitioners who early on recognized that data science is something new, are quoted along with other contemporary data scientists who are shaping the discipline both through their work and how they talk about it. A great strength of the book is its collection of the real-world, big-league examples contributed by the guest lecturers to Rachel’s course.  Doug Perlson of Real Direct, Jake Hofman of Microsoft Research, Brian Dalessandro and Claudia Perlich both of Media6Degrees, Kyle Teague of GetGlue, William Cukierski of Kaggle, David Huffaker of Google, Matt Gattis of Hutch.com, Mark Hansen of Columbia University, Ian Wong of Square, John Kelley of Morningside Analytics and David Madigan, Chair of the Columbia’s Statistics Department, all bring thoughtful presentations of difficult problems with which they have struggled. The perspective and insight of these practicing data scientists and statisticians is invaluable. Claudia Perlich’s discussion of data leakage alone is probably worth the price of the book. A minor fault of the book is the occasional lapse into the hip vulgar. Someone being “pissed off” and talking about a model “that would totally suck” are probably innocuous enough phrases, but describing a vector as “huge ass” doesn’t really contribute to clarity. In a book that stresses communication, language counts. Nevertheless, "Doing Data Science" is a really “good read”. The authors have done a remarkable job of integrating class notes, their respective blogs, and the presentations of the guest speakers into a single, engaging voice that mostly speaks clearly to the reader. I think this book will appeal to a wide audience. Beginners asking the question “How do I get into data science?” will find the book to be a guide that will take them a long way. Accomplished data scientists will find a perspective on their profession that they should appreciate as being both provocative and valuable. "Doing Data Science" argues eloquently for a technology that respects humanist ideals and ethical considerations. We should all be asking "What problems should I be working on?", "Am I doing science or not?", and "What are the social and ethical implications of my work?". Finally, technical managers charged with assembling a data science team, and other interested outsiders, should find the book helpful in getting beyond the hype and and having a look at what it really takes to squeeze insight from data.

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

@ThingsExpo Stories
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
SYS-CON Events announced today that Open Data Centers (ODC), a carrier-neutral colocation provider, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. Open Data Centers is a carrier-neutral data center operator in New Jersey and New York City offering alternative connectivity options for carriers, service providers and enterprise customers.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
The Internet of Things (IoT) is causing data centers to become radically decentralized and atomized within a new paradigm known as “fog computing.” To support IoT applications, such as connected cars and smart grids, data centers' core functions will be decentralized out to the network's edges and endpoints (aka “fogs”). As this trend takes hold, Big Data analytics platforms will focus on high-volume log analysis (aka “logs”) and rely heavily on cognitive-computing algorithms (aka “cogs”) to make sense of it all.
With several hundred implementations of IoT-enabled solutions in the past 12 months alone, this session will focus on experience over the art of the possible. Many can only imagine the most advanced telematics platform ever deployed, supporting millions of customers, producing tens of thousands events or GBs per trip, and hundreds of TBs per month. With the ability to support a billion sensor events per second, over 30PB of warm data for analytics, and hundreds of PBs for an data analytics archive, in his session at @ThingsExpo, Jim Kaskade, Vice President and General Manager, Big Data & Ana...
SYS-CON Events announced today that GENBAND, a leading developer of real time communications software solutions, has been named “Silver Sponsor” of SYS-CON's WebRTC Summit, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. The GENBAND team will be on hand to demonstrate their newest product, Kandy. Kandy is a communications Platform-as-a-Service (PaaS) that enables companies to seamlessly integrate more human communications into their Web and mobile applications - creating more engaging experiences for their customers and boosting collaboration and productiv...
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...