Apache Authors: Sematext Blog, Pat Romanski, ITinvolve Blog, Yeshim Deniz, Elizabeth White

Blog Feed Post

Book review: "Doing Data Science" by Rachel Schutt and Cathy O'Neil

by Joseph Rickert Every once in a while a single book comes to crystallize a new discipline. If books still have this power in the era of electronic media, "Doing Data Science, Straight Talk from the Frontline" by Rachel Schutt and Cathy O’Neil: O'Reilly, 2013 might just be the book that defines data science. "Doing Data Science", which is based on a course that Rachel taught at Columbia University and to which Cathy contributed, is ambitious and multidimensional. It presents data science in all of its messiness as an open-ended practice that is coalescing around an expanding class of problems; problems which are yielding to an interdisciplinary approach that includes ideas and techniques from statistics, computer science, machine learning, social science and other disciplines. The book is neither a statistics nor a machine learning text, but there are plenty of examples of statistical models and machine learning algorithms. There is enough R code in the text to get a beginner started on real problems with tools that are immediately useful. There is Python code, a bash shell script, mention of JSON and a down to earth discussion of Hadoop and MapReduce that many should find valuable. My favorite code example is the bash script (p 105) that fetches an Enron spam file and performs some basic word count calculations. Its almost casual insertion into the text, without fanfare and little explanation, provides a low key example of the kinds of baseline IT/ programmer skills that a newly minted statistician must acquire in order to work effectively as a data scientist. "Doing Data Science" is fairly well balanced in its fusion of the statistics and machine learning world views, but Rachel’s underlying bias as a PhD statistician comes through when it counts. The grounding in linear models and the inclusion of time series models establish the required inferential skills. The discussion of causality shows how statistical inference is essential to obtaining a deep understanding of how things really work, and the chapter on epidemiology provides a glimpse into just how deep and difficult are the problems that statisticians have been wrestling with for generations. (I found the inclusion of this chapter in a data science book to be a delightful surprise.) It is not only the selection of material, however, that betrays the book's statistical bias. When the authors take on the big questions their language indicates a statistical mindset. For example, in the discussion following "In what sense does data science deserve the word “science” in its name?" (p114) the authors write: “Every design choice you make can be formulated as an hypothesis, against which you will use rigorous testing and experimentation to validate or refute”. This is the language of a Neyman/Pearson trained statistician trying to pin down the truth. It stands in stark contrast with the machine learning viewpoint espoused in a quote by Kaggle’s Jeremy Howard who, when asked “Can you see any downside to the data-driven, black-box approach that dominates on Kaggle?”, replies: Some people take the view that you don’t end up with a richer understanding of the problem. But that’s just not true: The algorithms tell you what’s important and what’s not. You might ask why those things are important, but I think that’s less interesting. You end up with a predictive model that works. There is not too much to argue about there. So, whether you are doing science or not might just be in your intentions and point of view. Schutt and O’Neil do a marvelous job of exploring the tension between the quest for understanding and and the blunt success of just getting something that works. An unusual aspect of the book is its attempt to understand data science as a cultural phenomenon and to place the technology in a historical and social context. Most textbooks in mathematics, statistics and science make no mention of how things came to be. Their authors are just under too much pressure to get on with presenting the material to stop and and discuss “just what were those guys thinking?”. But Schutt and O’Neill take the time, and the book is richer for it. Mike Driscoll and Drew Conway, two practitioners who early on recognized that data science is something new, are quoted along with other contemporary data scientists who are shaping the discipline both through their work and how they talk about it. A great strength of the book is its collection of the real-world, big-league examples contributed by the guest lecturers to Rachel’s course.  Doug Perlson of Real Direct, Jake Hofman of Microsoft Research, Brian Dalessandro and Claudia Perlich both of Media6Degrees, Kyle Teague of GetGlue, William Cukierski of Kaggle, David Huffaker of Google, Matt Gattis of Hutch.com, Mark Hansen of Columbia University, Ian Wong of Square, John Kelley of Morningside Analytics and David Madigan, Chair of the Columbia’s Statistics Department, all bring thoughtful presentations of difficult problems with which they have struggled. The perspective and insight of these practicing data scientists and statisticians is invaluable. Claudia Perlich’s discussion of data leakage alone is probably worth the price of the book. A minor fault of the book is the occasional lapse into the hip vulgar. Someone being “pissed off” and talking about a model “that would totally suck” are probably innocuous enough phrases, but describing a vector as “huge ass” doesn’t really contribute to clarity. In a book that stresses communication, language counts. Nevertheless, "Doing Data Science" is a really “good read”. The authors have done a remarkable job of integrating class notes, their respective blogs, and the presentations of the guest speakers into a single, engaging voice that mostly speaks clearly to the reader. I think this book will appeal to a wide audience. Beginners asking the question “How do I get into data science?” will find the book to be a guide that will take them a long way. Accomplished data scientists will find a perspective on their profession that they should appreciate as being both provocative and valuable. "Doing Data Science" argues eloquently for a technology that respects humanist ideals and ethical considerations. We should all be asking "What problems should I be working on?", "Am I doing science or not?", and "What are the social and ethical implications of my work?". Finally, technical managers charged with assembling a data science team, and other interested outsiders, should find the book helpful in getting beyond the hype and and having a look at what it really takes to squeeze insight from data.

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

@ThingsExpo Stories
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
IoT is still a vague buzzword for many people. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. He also discussed how IoT is perceived by investors and how venture capitalist access this space. Other topics discussed were barriers to success, what is new, what is old, and what the future may hold. Mike Kavis is Vice President & Principal Cloud Architect at Cloud Technology Pa...
Dale Kim is the Director of Industry Solutions at MapR. His background includes a variety of technical and management roles at information technology companies. While his experience includes work with relational databases, much of his career pertains to non-relational data in the areas of search, content management, and NoSQL, and includes senior roles in technical marketing, sales engineering, and support engineering. Dale holds an MBA from Santa Clara University, and a BA in Computer Science from the University of California, Berkeley.
The Internet of Things (IoT) is rapidly in the process of breaking from its heretofore relatively obscure enterprise applications (such as plant floor control and supply chain management) and going mainstream into the consumer space. More and more creative folks are interconnecting everyday products such as household items, mobile devices, appliances and cars, and unleashing new and imaginative scenarios. We are seeing a lot of excitement around applications in home automation, personal fitness, and in-car entertainment and this excitement will bleed into other areas. On the commercial side, m...
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by mining large volumes of unstructured data, and how data tracking delivers uptime when it matters most.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
“With easy-to-use SDKs for Atmel’s platforms, IoT developers can now reap the benefits of realtime communication, and bypass the security pitfalls and configuration complexities that put IoT deployments at risk,” said Todd Greene, founder & CEO of PubNub. PubNub will team with Atmel at CES 2015 to launch full SDK support for Atmel’s MCU, MPU, and Wireless SoC platforms. Atmel developers now have access to PubNub’s secure Publish/Subscribe messaging with guaranteed ¼ second latencies across PubNub’s 14 global points-of-presence. PubNub delivers secure communication through firewalls, proxy ser...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...