Welcome!

Apache Authors: Gilad Parann-Nissany, ChandraShekar Dattatreya, Michael Meiner, MC Brown, Amy Lindberg

Related Topics: Security, Java, Linux, Virtualization, Web 2.0, Cloud Expo

Security: Blog Feed Post

Facebook Exploit Is Not Unique

Facebook isn't unique in the ability to use it to attack a third party, it's just more effective

This week's "bad news" with respect to information security centers on Facebook and the exploitation of HTTP caches to affect a DDoS attack. Reported as a 'vulnerability', this exploit takes advantage of the way the application protocol is designed to work. In fact, the same author who reports the Facebook 'vulnerability' has also shown you can use Google to do the same thing. Just about any site that enables you to submit content containing links and then retrieves those links for you (for caching purposes) could be used in this way. It's not unique to Facebook or Google, for that matter, they just have the perfect environment to make such an exploit highly effective.

The exploit works by using a site (in this case Facebook) to load content and takes advantage of the general principle of amplification to effectively DDoS a third-party site. This is a flood-based like attack, meaning it's attempting to overwhelm a server by flooding it with requests that voraciously consume server-side resources and slow everyone down - to the point of forcing it to appear "down" to legitimate users.

The requests brokered by Facebook are themselves 110% legitimate requests. The requests for an image (or PDF or large video file) are well-formed, and nothing about the requests on an individual basis could be detected as being an attack. This is, in part, why the exploit works: because the individual requests are wholly legitimate requests.

How it Works
The trigger for the "attack" is the caching service. Caches are generally excellent at, well, caching static objects with well-defined URIs. A cache doesn't have a problem finding /myimage.png. It's either there, or it's not and the cache has to go to origin to retrieve it. Where things get more difficult is when requests for content are dynamic; that is, they send parameters that the origin server interprets to determine which image to send, e.g. /myimage?id=30. This is much like an old developer trick to force the reload of dynamic content when browser or server caches indicate a match on the URL. By tacking on a random query parameter, you can "trick" the browser and the server into believing it's a brand new object, and it will go to origin to retrieve it - even though the query parameter is never used. That's where the exploit comes in.

HTTP servers accept as part of the definition of a URI any number of variable query parameters. Those parameters can be ignored or used at the discretion of the application. But when the HTTP server is looking to see if that content has been served already, it does look at those parameters. The reference for a given object is its URL, and thus tacking on a query parameter forces (or tricks if you prefer) the HTTP server to believe the object has never been served before and thus can't be retrieved from a cache.

Caches act on the same principles as an HTTP server because when you get down to brass tacks, a cache is a very specialized HTTP server, focused on mirroring content so it's closer to the user.

<img src=http://target.com/file?r=1>
<img src=http://target.com/file?r=2>
<img src=http://target.com/file?r=3>
...
<img src=http://target.com/file?r=1000>

Many, many, many, many (repeat as necessary) web applications are built using such models. Whether to retrieve text-based content or images is irrelevant to the cache. The cache looks at the request and, if it can't match it somehow, it's going to go to origin.

Which is what's possible with Facebook Notes and Google. By taking advantage of (exploiting) this design principle, if a note crafted with multiple image objects retrieved via a dynamic query is viewed by enough users at the same time, the origin can become overwhelmed or its network oversubscribed.

This is what makes it an exploit, not a vulnerability. There's nothing wrong with the behavior of these caches - they are working exactly as they were designed to act with respect to HTTP. The problem is that when the protocol and caching behavior was defined, such abusive behavior was not considered.

In other words, this is a protocol exploit not specific to Facebook (or Google). In fact, similar exploits have been used to launch attacks in the past. For example, consider some noise raised around WordPress in March 2014 that indicated it was being used to attack other sites by bypassing the cache and forcing a full reload from the origin server:

If you notice, all queries had a random value (like “?4137049=643182″) that bypassed their cache and force a full page reload every single time. It was killing their server pretty quickly.

 

But the most interesting part is that all the requests were coming from valid and legitimate WordPress sites. Yes, other WordPress sites were sending that random requests at a very large scale and bringing the site down.

The WordPress exploit was taking advantage of the way "pingbacks" work. Attackers were using sites to add pingbacks to amplify an attack on a third party site (also, ironically, a WordPress site).

It's not just Facebook, or Google - it's inherent in the way caching is designed to work.

Not Just HTTP
This isn't just an issue with HTTP. We can see similar behavior in a DNS exploit that renders DNS caching ineffective as protection against certain attack types. In the DNS case, querying a cache with a random host name results in a query to the authoritative (origin) DNS service. If you send enough random host names at the cache, eventually the DNS service is going to feel the impact and possibly choke.

In general, these types of exploits are based on protocol and well-defined system behavior. A cache is, by design, required to either return a matching object if found or go to the origin server if it is not. In both the HTTP and DNS case, the caching services are acting properly and as one would expect.

The problem is that this proper behavior can be exploited to affect a DDoS attack - against third-parties in the case of Facebook/Google and against the domain owner in the case of DNS.

These are not vulnerabilities, they are protocol exploits. This same "vulnerability" is probably present in most architectures that include caching. The difference is that Facebook's ginormous base of users allows for what is expected behavior to quickly turn into what looks like an attack.

Mitigating
The general consensus right now is the best way to mitigate this potential "attack" is to identify and either rate limit or disallow requests coming from Facebook's crawlers by IP address. In essence, the suggestion is to blacklist Facebook (and perhaps Google) to keep it from potentially overwhelming your site.

The author noted in his post regarding this exploit that:

Facebook crawler shows itself as facebookexternalhit. Right now it seems there is no other choice than to block it in order to avoid this nuisance.

The post was later updated to note that blocking by agent may not be enough, hence the consensus on IP-based blacklisting.

The problem is that attackers could simply find another site with a large user base (there are quite a few of them out there with the users to support a successful attack) and find the right mix of queries to bypass the cache (cause caches are a pretty standard part of a web-scale infrastructure) and voila! Instant attack.

Blocking Facebook isn't going to stop other potential attacks and it might seriously impede revenue generating strategies that rely on Facebook as a channel. Rate limiting based on inbound query volume for specific content will help mitigate the impact (and ensure legitimate requests continue to be served) but this requires some service to intermediate and monitor inbound requests and, upon seeing behavior indicative of a potential attack, the ability to intercede or apply the appropriate rate limiting policy. Such a policy could go further and blacklist IP addresses showing sudden increases in requests or simply blocking requests for the specified URI in question - returning instead some other content.

Another option would be to use a caching solution capable of managing dynamic content. For example, F5 Dynamic Caching includes the ability to designate parameters as either indicative of new content or not. That is, the caching service can be configured to ignore some (or all) parameters and serve content out of cache instead of hammering on the origin server.

Let's say the URI for an image was: /directory/images/dog.gif?ver=1;sz=728X90 where valid query parameters are "ver" (version) and "sz" (size). A policy can be configured to recognize "ver" as indicative of different content while all other query parameters indicate the same content and can be served out of cache. With this kind of policy an attacker could send any combination of the following and the same image would be served from cache, even though "sz" is different and there are random additional query parameters.

/directory/images/dog.gif?ver=1;sz=728X90; id=1234
/directory/images/dog.gif?ver=1;sz=728X900; id=123456
/directory/images/dog.gif?ver=1;sz=728X90; cid=1234 

By placing an application fluent cache service in front of your origin servers, when Facebook (or Google) comes knocking, you're able to handle the load.

Action Items
There have been no reports of an attack stemming from this exploitable condition in Facebook Notes or Google, so blacklisting crawlers from either Facebook or Google seems premature. Given that this condition is based on protocol behavior and system design and not a vulnerability unique to Facebook (or Google), though, it would be a good idea to have a plan in place to address, should such an attack actually occur - from there or some other site.

You should review your own architecture and evaluate its ability to withstand a sudden influx of dynamic requests for content like this, and put into place an operational plan for dealing with it should such an event occur.

For more information on protecting against all types of DDoS attacks, check out a new infographic we’ve put together here.

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@ThingsExpo Stories
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...