Welcome!

Apache Authors: Pat Romanski, Liz McMillan, Elizabeth White, Christopher Harrold, Janakiram MSV

Blog Feed Post

Quick History 2: GLMs, R and large data sets

by Joseph Rickert In last week’s post, I sketched out the history of Generalized Linear Models and their implementations. In this post I’ll attempt to outline how GLM functions evolved in R to handle large data sets. The first function to make it possible to build GLM models with datasets that are too big to fit into memory was the bigglm()from Thomas Lumley’s biglm package which was released to CRAN in May 2006. bigglm()is an example of a external memory or “chunking” algorithm. This means that data is read from some source on disk and processed one chunk at a time. Conceptually, chunking algorithms work as follows: a program reads a chunk of data into memory, performs intermediate calculations to compute the required sufficient statistics, saves the results and reads the next chunk. The process continues until the entire dataset is processed. Then, if necessary, the intermediate results are assembled into a final result. According to the documentation trail, bigglm()is based on Alan Miller’s 1991 refinement (algorithm AS 274 implemented in Fortran 77) to W. Morevin Genetlemen’s 1975 Algol algorithm ( AS 75). Both of these algorithms work by updating the Cholesky decomposition of the design matrix with new observations. For a model with p variables, only the p x p triangular Cholesky factor and a new row of data need to be in memory at any given time. bigglm()does not do the chunking for you. Working with the algorithm requires figuring out how to feed it chunks of data from a file or a database that are small enough to fit into memory with enough room left for processing. ( Have a look at the make.data() function defined on page 4 of the biglm pdf for the prototype example of chunking by passing a function to bigglm()’s data argument.) bigglm() and the biglm package offer few features for working with data. For example, bigglm() can handle factors but it assumes that the factor levels are consistent across all chunks. This is very reasonable under the assumption that the appropriate place to clean and prepare the data for analysis is the underlying database. The next steps in the evolution of building GLM models with R was the development of memory-mapped data structures along with the appropriate machinery to feed bigglm() data stored on disk. In late 2007, Dan Alder et al. released the ff package which provides data structures that, from R's point of view, make data residing on disk appear is if it were in RAM. The basic idea is that only a chunk (pagesize) of the underlying data file is mapped into memory and this data can be fed to bigglm(). This strategy really became useful in 2011 when Edwin de Jonge, Jan Wijffels and Jan van der Laan released ffbase, a package of statistical functions designed to exploit ff’s data structures. ffbase contains quite a few functions including some for basic data manipulation such as ffappend() and ffmatch(). For an excellent example of building a bigglm() model with a fairly large data set have a look at the post from the folks at BNOSAC. This is one of the most useful, hands-on posts with working code for building models with R and large data sets to be found. (It may be a testimony to the power of provocation.) Not longer after ff debuted (June 2008), Michael Kane, John Emerson and Peter Haverty released bigmemory, a package for working with large matrices backed by memory-mapped files. Thereafter followed a sequence of packages in the Big Memory Project, including biganalytics, for exploiting the computational possibilities opened by by bigmemory. bigmemory packages are built on the Boost Interprocess C++ library and were designed to facilitate parallel programming with foreach, snow, Rmpi and multicore and enable distributed computing from within R. The biganalytics package contains a wrapper function for bigglm() that enables building GLM models from very large files mapped to big.matrix objects with just a few lines of code. The initial release in early August 2010 of the RevoScaleR package for Revolution R Enterprise included rxLogit(), a function for building logistic regression models on very masive data sets. rxLogit() was one of the first of RevoScaleR’s Parallel External Memory Algorithms (PEMA). These algorithms are designed specifically for high performance computing with large data sets on a variety of distributed platforms. In June 2012, Revolution Analytics followed up with rxGlm(), a PEMA that implements all of the all of the standard GLM link/family pairs as well as Tweedie models and user-defined link functions. As with all of the PEMAS, scripts including rxGlm() may be run on different platforms just by changing a few lines of code that specifies the user’s compute context. For example, a statistician could test out a model on a local PC or cluster and then change the compute context to run it directly on a Hadoop cluster. The only other Big Data GLM implementation accessible through an R package of which I am aware is h20.glm() function that is part of the 0xdata’s JVM implementation of machine learning algorithms which was announced in October 2013.  As opposed the the external memory R implementations described above, H20 functions run in the distributed memory created by the H20 process. Look here for h20.glm() demo code. And that's it, I think this brings us up to date with R based (or accessible) functions for running GLMs on large data sets.  

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...