Welcome!

Apache Authors: Pat Romanski, Liz McMillan, Elizabeth White, Christopher Harrold, Janakiram MSV

Blog Feed Post

Quick History 2: GLMs, R and large data sets

by Joseph Rickert In last week’s post, I sketched out the history of Generalized Linear Models and their implementations. In this post I’ll attempt to outline how GLM functions evolved in R to handle large data sets. The first function to make it possible to build GLM models with datasets that are too big to fit into memory was the bigglm()from Thomas Lumley’s biglm package which was released to CRAN in May 2006. bigglm()is an example of a external memory or “chunking” algorithm. This means that data is read from some source on disk and processed one chunk at a time. Conceptually, chunking algorithms work as follows: a program reads a chunk of data into memory, performs intermediate calculations to compute the required sufficient statistics, saves the results and reads the next chunk. The process continues until the entire dataset is processed. Then, if necessary, the intermediate results are assembled into a final result. According to the documentation trail, bigglm()is based on Alan Miller’s 1991 refinement (algorithm AS 274 implemented in Fortran 77) to W. Morevin Genetlemen’s 1975 Algol algorithm ( AS 75). Both of these algorithms work by updating the Cholesky decomposition of the design matrix with new observations. For a model with p variables, only the p x p triangular Cholesky factor and a new row of data need to be in memory at any given time. bigglm()does not do the chunking for you. Working with the algorithm requires figuring out how to feed it chunks of data from a file or a database that are small enough to fit into memory with enough room left for processing. ( Have a look at the make.data() function defined on page 4 of the biglm pdf for the prototype example of chunking by passing a function to bigglm()’s data argument.) bigglm() and the biglm package offer few features for working with data. For example, bigglm() can handle factors but it assumes that the factor levels are consistent across all chunks. This is very reasonable under the assumption that the appropriate place to clean and prepare the data for analysis is the underlying database. The next steps in the evolution of building GLM models with R was the development of memory-mapped data structures along with the appropriate machinery to feed bigglm() data stored on disk. In late 2007, Dan Alder et al. released the ff package which provides data structures that, from R's point of view, make data residing on disk appear is if it were in RAM. The basic idea is that only a chunk (pagesize) of the underlying data file is mapped into memory and this data can be fed to bigglm(). This strategy really became useful in 2011 when Edwin de Jonge, Jan Wijffels and Jan van der Laan released ffbase, a package of statistical functions designed to exploit ff’s data structures. ffbase contains quite a few functions including some for basic data manipulation such as ffappend() and ffmatch(). For an excellent example of building a bigglm() model with a fairly large data set have a look at the post from the folks at BNOSAC. This is one of the most useful, hands-on posts with working code for building models with R and large data sets to be found. (It may be a testimony to the power of provocation.) Not longer after ff debuted (June 2008), Michael Kane, John Emerson and Peter Haverty released bigmemory, a package for working with large matrices backed by memory-mapped files. Thereafter followed a sequence of packages in the Big Memory Project, including biganalytics, for exploiting the computational possibilities opened by by bigmemory. bigmemory packages are built on the Boost Interprocess C++ library and were designed to facilitate parallel programming with foreach, snow, Rmpi and multicore and enable distributed computing from within R. The biganalytics package contains a wrapper function for bigglm() that enables building GLM models from very large files mapped to big.matrix objects with just a few lines of code. The initial release in early August 2010 of the RevoScaleR package for Revolution R Enterprise included rxLogit(), a function for building logistic regression models on very masive data sets. rxLogit() was one of the first of RevoScaleR’s Parallel External Memory Algorithms (PEMA). These algorithms are designed specifically for high performance computing with large data sets on a variety of distributed platforms. In June 2012, Revolution Analytics followed up with rxGlm(), a PEMA that implements all of the all of the standard GLM link/family pairs as well as Tweedie models and user-defined link functions. As with all of the PEMAS, scripts including rxGlm() may be run on different platforms just by changing a few lines of code that specifies the user’s compute context. For example, a statistician could test out a model on a local PC or cluster and then change the compute context to run it directly on a Hadoop cluster. The only other Big Data GLM implementation accessible through an R package of which I am aware is h20.glm() function that is part of the 0xdata’s JVM implementation of machine learning algorithms which was announced in October 2013.  As opposed the the external memory R implementations described above, H20 functions run in the distributed memory created by the H20 process. Look here for h20.glm() demo code. And that's it, I think this brings us up to date with R based (or accessible) functions for running GLMs on large data sets.  

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

@ThingsExpo Stories
WebRTC is great technology to build your own communication tools. It will be even more exciting experience it with advanced devices, such as a 360 Camera, 360 microphone, and a depth sensor camera. In his session at @ThingsExpo, Masashi Ganeko, a manager at INFOCOM Corporation, will introduce two experimental projects from his team and what they learned from them. "Shotoku Tamago" uses the robot audition software HARK to track speakers in 360 video of a remote party. "Virtual Teleport" uses a...
There is only one world-class Cloud event on earth, and that is Cloud Expo – which returns to Silicon Valley for the 21st Cloud Expo at the Santa Clara Convention Center, October 31 - November 2, 2017. Every Global 2000 enterprise in the world is now integrating cloud computing in some form into its IT development and operations. Midsize and small businesses are also migrating to the cloud in increasing numbers. Companies are each developing their unique mix of cloud technologies and service...
SYS-CON Events announced today that Secure Channels, a cybersecurity firm, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Secure Channels, Inc. offers several products and solutions to its many clients, helping them protect critical data from being compromised and access to computer networks from the unauthorized. The company develops comprehensive data encryption security strategie...
Recently, WebRTC has a lot of eyes from market. The use cases of WebRTC are expanding - video chat, online education, online health care etc. Not only for human-to-human communication, but also IoT use cases such as machine to human use cases can be seen recently. One of the typical use-case is remote camera monitoring. With WebRTC, people can have interoperability and flexibility for deploying monitoring service. However, the benefit of WebRTC for IoT is not only its convenience and interopera...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
SYS-CON Events announced today that App2Cloud will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. App2Cloud is an online Platform, specializing in migrating legacy applications to any Cloud Providers (AWS, Azure, Google Cloud).
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. Jack Norris reviews best practices to show how companies develop, deploy, and dynamically update these applications and how this data-first...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, shared examples from a wide range of industries – including en...
Intelligent Automation is now one of the key business imperatives for CIOs and CISOs impacting all areas of business today. In his session at 21st Cloud Expo, Brian Boeggeman, VP Alliances & Partnerships at Ayehu, will talk about how business value is created and delivered through intelligent automation to today’s enterprises. The open ecosystem platform approach toward Intelligent Automation that Ayehu delivers to the market is core to enabling the creation of the self-driving enterprise.
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Consumers increasingly expect their electronic "things" to be connected to smart phones, tablets and the Internet. When that thing happens to be a medical device, the risks and benefits of connectivity must be carefully weighed. Once the decision is made that connecting the device is beneficial, medical device manufacturers must design their products to maintain patient safety and prevent compromised personal health information in the face of cybersecurity threats. In his session at @ThingsExpo...
SYS-CON Events announced today that Grape Up will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Grape Up is a software company specializing in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market across the U.S. and Europe, Grape Up works with a variety of customers from emergi...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
SYS-CON Events announced today that Massive Networks will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Massive Networks mission is simple. To help your business operate seamlessly with fast, reliable, and secure internet and network solutions. Improve your customer's experience with outstanding connections to your cloud.
Everything run by electricity will eventually be connected to the Internet. Get ahead of the Internet of Things revolution and join Akvelon expert and IoT industry leader, Sergey Grebnov, in his session at @ThingsExpo, for an educational dive into the world of managing your home, workplace and all the devices they contain with the power of machine-based AI and intelligent Bot services for a completely streamlined experience.
Because IoT devices are deployed in mission-critical environments more than ever before, it’s increasingly imperative they be truly smart. IoT sensors simply stockpiling data isn’t useful. IoT must be artificially and naturally intelligent in order to provide more value In his session at @ThingsExpo, John Crupi, Vice President and Engineering System Architect at Greenwave Systems, will discuss how IoT artificial intelligence (AI) can be carried out via edge analytics and machine learning techn...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, will examine the regulations and provide insight on how it affects technology, challenges the established rules and will usher in new levels of diligence a...
In the enterprise today, connected IoT devices are everywhere – both inside and outside corporate environments. The need to identify, manage, control and secure a quickly growing web of connections and outside devices is making the already challenging task of security even more important, and onerous. In his session at @ThingsExpo, Rich Boyer, CISO and Chief Architect for Security at NTT i3, discussed new ways of thinking and the approaches needed to address the emerging challenges of security i...
SYS-CON Events announced today that Datera, that offers a radically new data management architecture, has been named "Exhibitor" of SYS-CON's 21st International Cloud Expo ®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Datera is transforming the traditional datacenter model through modern cloud simplicity. The technology industry is at another major inflection point. The rise of mobile, the Internet of Things, data storage and Big...