Click here to close now.




















Welcome!

Apache Authors: Dana Gardner, Liz McMillan, Mohamed El-Refaey, Ajay Budhraja, Don MacVittie

Blog Feed Post

Why Contextual Data Locality Matters

Big Data is quickly overtaking SDN as a key phrase in today’s networking lingo. And overused already as it may be, it actually has a lot more meaning and definition compared to SDN. Big Data solutions are designed to work on lots of data as the name suggests. Of course they have been around forever, talk to any large bank, credit card company, airline or logistics company and all of them have had applications running on extremely large databases and data sets forever. But this is the new Big Data, the one inspired by Hadoop, MapReduce and friends. High performance compute clusters specifically created to analyze large amounts of data and reduce it to a form and quantity that human brains can use in decision making.

What makes today’s Big Data solutions different than its more traditional large database based applications, beyond the sheer datasets being analyzed, is the distributed nature of the analysis. Big Data solutions are designed to run across 100s or even 1000s of servers, each with multiple CPU cores to chew on the data. Traditional large database applications tend to be more localized with fewer applications and servers accessing the data, allowing for more tightly custom integrated solutions, the likes of which Oracle and friends are experts at.

Big Data Flashback

In the late 80s I started my career working as a network engineer for a high energy physics research institute. Working closely with the folks at CERN in Geneva, these physicists were (at the time, and probably still) masters of creating very large datasets. Every time an experiment was run, Tbytes of data (probably Pbytes by now) were generated by thousands of sensors along the tunnel or ring particles were passed through to collide.

The Big Data solution at the time was primitive, but not all that much different than today. The large datasets were manually broken into manageable pieces, something that would fit on a tape or disk. These datasets were then hand copied onto a compute server or super computer and the analysis application would churn through it to find specific data, correlate events and simply reduce the data to something smaller and meaningful. This would then create a new dataset, which would be combined, chopped up again, and the process repeated itself until they arrived at data that was consumable for humans to create new theories from, or provide a piece of proof of an existing theory.

During that first job, the IT group spend an enormous amount of time moving data around. A lot of it manual: tapes and disks were constantly being copied onto the appropriate compute server. The data had to be local to have any chance of analyzing the data. Between tapes, local disks and the network, the local disks were the only storage with appropriate speed to have a hope of finalizing the data reductions. And even then it would not be unusual to have a rather powerful (for the time) Apollo workstation run for several weeks on a single data set.

Back to the here and now

Forward the clock to now. The above description is really not that different from how Hadoop MapReduce works. Start with a big data set, chop it into pieces, replicate the data, compute on the data close to physical locality of the data. Then send results to Reducers, combine the results, then perhaps repeat again to get to human interpretable results.

As fast as we believe the network is within 10GbE access ports, it is still commonly the most restrictive component in the compute, distributed storage and network trio. Compute power increments have far outpaced network speed increments and even memory speed increments. We have many more cycles available to compute, but have not been able to get the data into these CPUs with the same increments. As a result, storage solutions are becoming increasingly distributed, closer to the compute power that needs it.

It’s a natural thought to have the data close to where it needs to be processed, close enough that the effort of retrieving it does not impact the overall completion of the task that uses that data. If I am writing a research paper that takes several hours to complete, I do not mind having to wait a second here or there for the right web sites to load. I would mind if I had to get into my car and drive to the library to look something up, drive back home to work on my paper, and keep doing that. The relationship between time and effort to get data has to become negligible compared to the time and effort required to complete the task.

Locality and growth

This type of contextual locality is extremely hard to manage in a dynamic and growing environment. How do you make sure that the right data remains contextually close to where it is needed when servers and VMs may not be physically close? They may not be in the same rack for the same application or customer, they may not even be in the same pod or datacenter. Storage is relatively cheap, but replication for closeness can very quickly lead to a data distribution complexity that is unmanageable in environments where its not a single orchestrated big data solution.

To solve this problem you need help from your network. You need to be able to create locality on the fly. Things that are not physically close need to be made virtually close, but with the characteristics of physical locality. And in network terms these are of course measured in the usual staples of latency and bandwidth. This is when you want to articulate relationships between the data and the applications that need that data and create virtual closeness that resembles the physical. This may mean dedicated paths through multiple switches to avoid congestion that will dramatically impact latency. These same paths can provide direct physical connectivity through dynamically engineered optical paths between application and storage, or simply appropriate prioritization of traffic along these paths. Without having to worry explicitly where the application is or where the storage is.

Physics will always stand in the way of what we really want or need, but that does not mean we use that same physics with a bit of math to create solutions that manage the complexity of creating dynamic locality. Locality is important. More pronounced in Big Data solutions, but even at a smaller scale it is important within the context of the compute effort on that data.

[Today's fun fact: Lake Superior is the world's largest lake. With that kind of naming accuracy we would like to hire the person that named the lake as our VP of Naming and Terminology]

The post Why Contextual Data Locality Matters appeared first on Plexxi.

Read the original blog entry...

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

@ThingsExpo Stories
While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
A producer of the first smartphones and tablets, presenter Lee M. Williams will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. In his session at @ThingsExpo, Lee Williams, COO of ETwater, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater.
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
MuleSoft has announced the findings of its 2015 Connectivity Benchmark Report on the adoption and business impact of APIs. The findings suggest traditional businesses are quickly evolving into "composable enterprises" built out of hundreds of connected software services, applications and devices. Most are embracing the Internet of Things (IoT) and microservices technologies like Docker. A majority are integrating wearables, like smart watches, and more than half plan to generate revenue with APIs within the next year.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, d...