Click here to close now.


Apache Authors: Pat Romanski, Jim Scott, Jnan Dash, Craig Lowell, Liz McMillan

Blog Feed Post

Why Contextual Data Locality Matters

Big Data is quickly overtaking SDN as a key phrase in today’s networking lingo. And overused already as it may be, it actually has a lot more meaning and definition compared to SDN. Big Data solutions are designed to work on lots of data as the name suggests. Of course they have been around forever, talk to any large bank, credit card company, airline or logistics company and all of them have had applications running on extremely large databases and data sets forever. But this is the new Big Data, the one inspired by Hadoop, MapReduce and friends. High performance compute clusters specifically created to analyze large amounts of data and reduce it to a form and quantity that human brains can use in decision making.

What makes today’s Big Data solutions different than its more traditional large database based applications, beyond the sheer datasets being analyzed, is the distributed nature of the analysis. Big Data solutions are designed to run across 100s or even 1000s of servers, each with multiple CPU cores to chew on the data. Traditional large database applications tend to be more localized with fewer applications and servers accessing the data, allowing for more tightly custom integrated solutions, the likes of which Oracle and friends are experts at.

Big Data Flashback

In the late 80s I started my career working as a network engineer for a high energy physics research institute. Working closely with the folks at CERN in Geneva, these physicists were (at the time, and probably still) masters of creating very large datasets. Every time an experiment was run, Tbytes of data (probably Pbytes by now) were generated by thousands of sensors along the tunnel or ring particles were passed through to collide.

The Big Data solution at the time was primitive, but not all that much different than today. The large datasets were manually broken into manageable pieces, something that would fit on a tape or disk. These datasets were then hand copied onto a compute server or super computer and the analysis application would churn through it to find specific data, correlate events and simply reduce the data to something smaller and meaningful. This would then create a new dataset, which would be combined, chopped up again, and the process repeated itself until they arrived at data that was consumable for humans to create new theories from, or provide a piece of proof of an existing theory.

During that first job, the IT group spend an enormous amount of time moving data around. A lot of it manual: tapes and disks were constantly being copied onto the appropriate compute server. The data had to be local to have any chance of analyzing the data. Between tapes, local disks and the network, the local disks were the only storage with appropriate speed to have a hope of finalizing the data reductions. And even then it would not be unusual to have a rather powerful (for the time) Apollo workstation run for several weeks on a single data set.

Back to the here and now

Forward the clock to now. The above description is really not that different from how Hadoop MapReduce works. Start with a big data set, chop it into pieces, replicate the data, compute on the data close to physical locality of the data. Then send results to Reducers, combine the results, then perhaps repeat again to get to human interpretable results.

As fast as we believe the network is within 10GbE access ports, it is still commonly the most restrictive component in the compute, distributed storage and network trio. Compute power increments have far outpaced network speed increments and even memory speed increments. We have many more cycles available to compute, but have not been able to get the data into these CPUs with the same increments. As a result, storage solutions are becoming increasingly distributed, closer to the compute power that needs it.

It’s a natural thought to have the data close to where it needs to be processed, close enough that the effort of retrieving it does not impact the overall completion of the task that uses that data. If I am writing a research paper that takes several hours to complete, I do not mind having to wait a second here or there for the right web sites to load. I would mind if I had to get into my car and drive to the library to look something up, drive back home to work on my paper, and keep doing that. The relationship between time and effort to get data has to become negligible compared to the time and effort required to complete the task.

Locality and growth

This type of contextual locality is extremely hard to manage in a dynamic and growing environment. How do you make sure that the right data remains contextually close to where it is needed when servers and VMs may not be physically close? They may not be in the same rack for the same application or customer, they may not even be in the same pod or datacenter. Storage is relatively cheap, but replication for closeness can very quickly lead to a data distribution complexity that is unmanageable in environments where its not a single orchestrated big data solution.

To solve this problem you need help from your network. You need to be able to create locality on the fly. Things that are not physically close need to be made virtually close, but with the characteristics of physical locality. And in network terms these are of course measured in the usual staples of latency and bandwidth. This is when you want to articulate relationships between the data and the applications that need that data and create virtual closeness that resembles the physical. This may mean dedicated paths through multiple switches to avoid congestion that will dramatically impact latency. These same paths can provide direct physical connectivity through dynamically engineered optical paths between application and storage, or simply appropriate prioritization of traffic along these paths. Without having to worry explicitly where the application is or where the storage is.

Physics will always stand in the way of what we really want or need, but that does not mean we use that same physics with a bit of math to create solutions that manage the complexity of creating dynamic locality. Locality is important. More pronounced in Big Data solutions, but even at a smaller scale it is important within the context of the compute effort on that data.

[Today's fun fact: Lake Superior is the world's largest lake. With that kind of naming accuracy we would like to hire the person that named the lake as our VP of Naming and Terminology]

The post Why Contextual Data Locality Matters appeared first on Plexxi.

Read the original blog entry...

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

@ThingsExpo Stories
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York and Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound cha...
DevOps is about increasing efficiency, but nothing is more inefficient than building the same application twice. However, this is a routine occurrence with enterprise applications that need both a rich desktop web interface and strong mobile support. With recent technological advances from Isomorphic Software and others, rich desktop and tuned mobile experiences can now be created with a single codebase – without compromising functionality, performance or usability. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, demonstrated examples of com...
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningful and actionable insights. In his session at @ThingsExpo, Paul Turner, Chief Marketing Officer at...
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
In his General Session at 17th Cloud Expo, Bruce Swann, Senior Product Marketing Manager for Adobe Campaign, explored the key ingredients of cross-channel marketing in a digital world. Learn how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects).
We all know that data growth is exploding and storage budgets are shrinking. Instead of showing you charts on about how much data there is, in his General Session at 17th Cloud Expo, Scott Cleland, Senior Director of Product Marketing at HGST, showed how to capture all of your data in one place. After you have your data under control, you can then analyze it in one place, saving time and resources.
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, exploreed the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessions, I wanted to share some of my observations on emerging trends. As cyber security serves as a fou...
With all the incredible momentum behind the Internet of Things (IoT) industry, it is easy to forget that not a single CEO wakes up and wonders if “my IoT is broken.” What they wonder is if they are making the right decisions to do all they can to increase revenue, decrease costs, and improve customer experience – effectively the same challenges they have always had in growing their business. The exciting thing about the IoT industry is now these decisions can be better, faster, and smarter. Now all corporate assets – people, objects, and spaces – can share information about themselves and thei...
Continuous processes around the development and deployment of applications are both impacted by -- and a benefit to -- the Internet of Things trend. To help better understand the relationship between DevOps and a plethora of new end-devices and data please welcome Gary Gruver, consultant, author and a former IT executive who has led many large-scale IT transformation projects, and John Jeremiah, Technology Evangelist at Hewlett Packard Enterprise (HPE), on Twitter at @j_jeremiah. The discussion is moderated by me, Dana Gardner, Principal Analyst at Interarbor Solutions.
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Discussions of cloud computing have evolved in recent years from a focus on specific types of cloud, to a world of hybrid cloud, and to a world dominated by the APIs that make today's multi-cloud environments and hybrid clouds possible. In this Power Panel at 17th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the importance of customers being able to use the specific technologies they need, through environments and ecosystems that expose their APIs to make true change and transformation possible.
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound effect on the world, and what should we expect to see over the next couple of years.
Microservices are a very exciting architectural approach that many organizations are looking to as a way to accelerate innovation. Microservices promise to allow teams to move away from monolithic "ball of mud" systems, but the reality is that, in the vast majority of organizations, different projects and technologies will continue to be developed at different speeds. How to handle the dependencies between these disparate systems with different iteration cycles? Consider the "canoncial problem" in this scenario: microservice A (releases daily) depends on a couple of additions to backend B (re...
The cloud. Like a comic book superhero, there seems to be no problem it can’t fix or cost it can’t slash. Yet making the transition is not always easy and production environments are still largely on premise. Taking some practical and sensible steps to reduce risk can also help provide a basis for a successful cloud transition. A plethora of surveys from the likes of IDG and Gartner show that more than 70 percent of enterprises have deployed at least one or more cloud application or workload. Yet a closer inspection at the data reveals less than half of these cloud projects involve production...
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Day 2 Keynote at 17th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, wil...
PubNub has announced the release of BLOCKS, a set of customizable microservices that give developers a simple way to add code and deploy features for realtime apps.PubNub BLOCKS executes business logic directly on the data streaming through PubNub’s network without splitting it off to an intermediary server controlled by the customer. This revolutionary approach streamlines app development, reduces endpoint-to-endpoint latency, and allows apps to better leverage the enormous scalability of PubNub’s Data Stream Network.
Container technology is shaping the future of DevOps and it’s also changing the way organizations think about application development. With the rise of mobile applications in the enterprise, businesses are abandoning year-long development cycles and embracing technologies that enable rapid development and continuous deployment of apps. In his session at DevOps Summit, Kurt Collins, Developer Evangelist at, examined how Docker has evolved into a highly effective tool for application delivery by allowing increasingly popular Mobile Backend-as-a-Service (mBaaS) platforms to quickly crea...