Click here to close now.

Welcome!

Apache Authors: Elizabeth White, Pat Romanski, Carmen Gonzalez, Roger Strukhoff, XebiaLabs Blog

Related Topics: XML

XML: Article

An Introduction to JDOM Part 2 of 2

An Introduction to JDOM Part 2 of 2

This second of a two-part series on JDOM examines in greater detail what it takes to use JDOM to perform some common tasks. In particular, I'll illustrate how to create JDOM documents, read JDOM documents from various sources (including SAX and DOM), output to various sources, and how to use JDOM with XSLT.

The overview of JDOM discussed in Part 1 (XML-J, Vol. 2, issue 7) revealed that JDOM bridges the gap between inconsistencies in DOM parser APIs via adapters. It also takes SAX and DOM to the next level in terms of ease of use, by compensating for the weaknesses of these APIs when it comes to XML document manipulation.

Part 1 explored the JDOM API and the packages and classes that are most significant for developing in JDOM. The main components of a JDOM document that were defined in Part 1 are critical prerequisites for understanding this article.

Creating a JDOM Document
JDOM documents can be created in two ways - from scratch or from some other input source, such as an XML document, a series of SAX events, or a DOM document. First, we'll discuss how to create a JDOM document in memory from scratch, and then, in the next section, we'll address how to output that document in various different formats.

After we create a JDOM document and show how to output its content, we will demonstrate how to input an existing XML document, a series of SAX events, or a DOM document, and convert it into a JDOM document, which is the second option for creating a JDOM document.

Creating a JDOM Document in Memory
Let's begin by creating a JDOM document in memory, from scratch. Since JDOM was written with the Java developer in mind (keeping as close to Java standards as possible), creating a new JDOM document in memory is straightforward for Java developers.

To create a JDOM document in memory using the core JDOM classes, Document and Element from the org.jdom package, use the following code:

Document doc = new Document( new
Element("root-element")

.setText("Hello World!") );

This creates, in memory, a bare bones JDOM document and stores it in the variable doc. That's all there is to it. Next, we'll look at outputting this document to the screen, so we can see what it looks like in XML.

Outputting JDOM Documents
After creating a JDOM document, it can be output using one of three primary ways:

1. org.jdom.output.DOMOutputter: As a DOM document
2. org.jdom.output.SAXOutputter:  As a sequence of SAX events
3. org.jdom.output.XMLOutputter: As an XML document to a file or an output stream

As part of the org.jdom.output package, XMLOutputter outputs a JDOM document to an output stream, such as the screen, or to a file. Alternatively, the SAXOutputter or DOMOutputter classes, also of the org.jdom.output package, can be used to output the JDOM document as a series of SAX events or as a DOM document, respectively.

In Listing 1, we illustrate output using XMLOutputter to output to the standard output stream, System.out, which by default is the screen when running in a DOS/UNIX command window.

Using XMLOutputter
When a JDOM document is output as an XML document, it's output as one or two long lines of XML code unless you specify otherwise. This is fine if it's being sent to another application or system for processing, and is actually the most compact. However, it makes it very difficult to read and see the structure.

To format the XML output to improve readability - by humans, not computers - we can specify a couple of parameters when creating the XMLOutputter. The first parameter defines the level of indentation - usually as a sequence of spaces - and the second is a Boolean value that, if set to true, causes new lines to be added to the output.

Here's an example:

outputter = new XMLOutputter(" ",
true);
outputter.output(doc, System.out);

We use this approach in our HelloWorld example shown later in the article.

Note that since XMLOutputter contains methods to output a JDOM document to a java.io.OutputStream as well as to a java.io.Writer, you can use the same approach whether outputting to a file, an output stream (such as across a network), to the screen, or to any other form of Writer or OutputStream.

Other output methods in XMLOutputter allow you to output just parts of the JDOM document such as CDATA sections, comments, elements, entities, and processing instructions. We talked about each of these components in Part 1.

The JDOM document created as described in the last example will be output to the screen. The code required is in Listing 1.

To compile this file, first ensure that you have set up your Java environment correctly for use with JDOM. Your CLASSPATH must include the xerces.jar file found in the lib subdirectory of your JDOM distribution. The xerces.jar file should be followed in the CLASSPATH by the jdom.jar file from the build subdirectory of your JDOM distribution.

Next, to compile the HelloWorld.java file, type the following code:

javac HelloWorld.java

After the HelloWorld.java file compiles, run the HelloWorld application using:

java HelloWorld

This produces the following output:

<?xml version="1.0" encoding="UTF-8"?> <root-element>Hello World!</root-element>

The root-element tag is from the code defined in the HelloWorld.java file, specifically from the line that instantiates a new Element. Here is the code that defines the name of the new Element.

new Element("root-element")

The text "Hello World!" also was defined in the code in the HelloWorld.java file and by the call to the setText method. The following code defines the text for the root element:

new Element("root-element").setText("Hello World!")

As you can see, using JDOM, it's possible to produce perfectly valid XML output with little prior knowledge of XML. This was one of the original goals of JDOM.

Outputting Using DOMOutputter
We just saw how to output a JDOM document as an XML file. Using DOMOutputter, we can output a JDOM document as a DOM document. This is useful when interfacing with another application or system that expects a DOM document as its input.

The following lines of code show how to create and use DOMOutputter to output a JDOM document, doc.

DOMOutputter outputter = new DOMOutputter(); outputter.output( doc );

In addition to outputting JDOM documents, DOMOutputter also provides methods that allow you to output JDOM elements and attributes. See the JDOM API documentation for details.

Outputting Using SAXOutputter
We just saw how to output a JDOM document as an XML file and as a DOM document. The final way to output a JDOM document is as a sequence of SAX events. This is useful for interfacing with applications or components that handle a series of SAX events.

When constructing a SAXOutputter, you must specify a SAX content handler (actually an org.xml.sax.ContentHandler) as a minimum. You then have the option of specifying a SAX error handler (org.xml.sax.ErrorHandler), DTD handler (org.xml.sax.DTDHandler), and entity handler (org.xml.sax.EntityHandler) after you have created the SAXOutputter object.

The following lines of code show how to create and use SAXOutputter to output a JDOM document, doc.

SAXOutputter outputter = new SAXOutputter( contentHandler ); outputter.output( doc );

After creating a SAXOutputter object, you need to invoke the output() method to pass the JDOM document object you want to output to the outputter.

Inputting to JDOM Documents
Earlier in this article we saw how to create a JDOM document from scratch. Another way of creating a JDOM document is to read an XML document or input stream (using a SAX parser), or input a DOM document. Again, we will use an output stream to output the JDOM document.

To input an XML file, input stream, or DOM document as a JDOM document, use the SAXBuilder or DOMBuilder classes, respectively, from the org.jdom.input package.

Inputting Using SAXBuilder
Perhaps the most common means of building a JDOM document is to use SAXBuilder. SAXBuilder uses a SAX parser to parse an XML input file or input stream. Building a JDOM document using SAXBuilder is a two-step process.

In step one, you need to create a new instance of a SAXBuilder object. Next, invoke one of the build methods for reading the XML input and building a JDOM document object.

Four different constructors are available for creating a new SAXBuilder object, the primary one using the default SAX parser as determined by JAXP. Validation is turned off. It can be enabled and disabled after the construction of a SAXBuilder object by using the setValidation() method.

The other three constructors allow more control over whether or not validation is enabled or disabled and in choosing an alternate SAX parser.

After creating a SAXBuilder object, other methods are available that allow us to initialize it with a custom DTD handler, Entity resolver, XML filter, and error handler.

Once we have instantiated a new SAXBuilder object, we can use it to build a JDOM document. There are seven different publicly accessible build methods available.

The main differences between the seven build methods lie in where the XML input is to come from. It can come from a variety of sources, including one specified by a java.io.File, java.io.InputStream, java.io.Reader, a URI specified as a java.lang.String, or a java.net.URL.

SAX parsers tend to be the first choice over DOM parsers because of their speed when reading in XML and generating a JDOM document. If you prefer not to use the default SAX parser with SAXBuilder, you can always substitute a third-party SAX parser.

Simply pass the name of the SAX Driver class to the SAXBuilder constructor when creating the builder. Make sure that the classes required by the alternate parser are available in your CLASSPATH. SAXBuilder will then use the specified SAX parser to build a JDOM document.

Inputting Using DOMBuilder
An alternative to the SAXBuilder is the DOMBuilder. The DOMBuilder class is intended to allow us to build a JDOM document from a preexisting DOM document. It uses basically the same steps as when using SAXBuilder.

First, create a new instance of a DOMBuilder object. Next, invoke one of the build methods to read the XML input and build a JDOM document object.

To create a new DOMBuilder object, four different constructors are available. The default constructor creates a new DOMBuilder using the default DOM parser - as specified by the default JAXP parser, or a JDOM default if not. Validation is turned off.

The default constructor with no validation suffices for most purposes, but the other three constructors allow for greater control when selecting a DOM parser. They also allow you to enable or disable validation.

After creating a DOMBuilder object, use one of the DOMBuilder.build methods to build a JDOM document from an existing DOM document object. This build method is just like the SAXBuilder.build methods except that it takes an org.w3c.dom.Document object as a single argument for its input.

In addition, DOMBuilder contains a build method that allows you to construct a JDOM element object directly from a DOM element (org.w3c.dom.Element) object. The DOMBuilder class is intended primarily as a way of generating a JDOM document from a preexisting DOM document.

The DOMBuilder class contains three additional DOMBuilder.build methods, each of these taking a single argument - either a java.io.File, java.io.InputStream, or a java.net.URL - and building a JDOM document from a file, input stream, or URL, respectively. These other methods are provided as a means of cross-checking the SAXBuilder.build methods, which is the recommended parser for XML parsing.

Generating a JDOM document using a DOM parser is slow, hence the SAX parser recommendation. The only possible exception to not using a SAX parser (via the SAXBuilder class) is if you are trying to validate the correct operation of the SAXBuilder class.

Working Together: JDOM and XSLT
One of the more common questions posted to the JDOM-interest discussion list centers on using JDOM with XSLT. There are several ways to do this. Below we look at one such way using a couple of classes from the JDOM-contrib repository.

Now that we have seen how to create, input, and output a JDOM document object, let's see how to feed it into an XSLT processor to transform one JDOM document into another.

XSLT Transformations Using JDOMResult and JDOMSource
The example described later assumes that you have downloaded and installed the JDOM-contrib files from the JDOM Web site. Refer to Part 1 of this series for details on downloading and installing JDOM. The JDOM-contrib files contain two classes intended to make using JDOM with XSLT quite straightforward. These are JDOMResult and JDOMSource. You can access these, provided the JDOM-contrib.jar file is (or its classes are) in your CLASSPATH.

In addition to the JDOM-contrib files, this example also makes use of classes from the Java API for XML Processing (JAXP) 1.1.

In Listing 2 there's a transform method - in the class XSLTDemo - that takes a JDOM document and the name of an XSLT file, then using JDOMResult and JDOMSource, transforms it according to the instructions in the given XSLT file. The transform method then returns the resulting JDOM document.

I thank Laurent Bihanic for this example, and the contribution of JDOMSource and JDOMResult to the JDOM-contrib repository.

Family Matters: Working with Children
One of the useful features of JDOM is that it allows developers to add and remove elements with a single line of code in its simplest form. For example, developers can create a child element from one line of code instead of requiring a factory method to create it for them after requesting it. However, more business logic may need to be added for greater functionality.

Once you have a JDOM document, you'll want to traverse it and possibly manipulate certain elements. JDOM makes manipulation of child elements as easy as manipulating a Java 2 List. To obtain a list of child Elements belonging to a given element, use one of the getChildren methods:

List children = element.getChildren();
List children = element.getChildren
( name );
List children = element.getChildren
( name, namespace );

These methods return a list of child elements belonging to the Element, element. If no children exist, the returned list will be empty.

Any changes to the returned list object will automatically be reflected in the underlying JDOM document. Since each of these methods return a Java 2 List object, then adding, removing, and reordering children are performed using native Java 2 List operations.

For example, to create a new child Element and add it as the second child to a list, use something like the following:

Element newChild =
new Element("child")
.setText("new child element");
children.add( 1, newChild );

Note that since the first item in a list is numbered 0, then the second item has an index of 1. Hence, the above code adds the newChild element as the second child in the list, children.

Similarly, to remove the first element (index 0) from the list, use the following:

children.remove( 0 );

The change is automatically reflected in the associated JDOM document, and the first child will be removed from the document.

As another JDOM code safety check, JDOM validates the document structure, making sure you don't have duplicate nodes above and below a child, which would result in an infinite loop. In other words, JDOM overrides the add and remove methods and makes sure there's only one parent for each child element and that that same child does not exist in a conflicting position on the tree.

Conclusion
This two-part series on JDOM examined in detail how this open-source Java API simplifies XML document manipulation when compared with the previous alternatives. It also describes how JDOM interacts with existing APIs for document manipulation, such as SAX and DOM. JDOM's tight, Java-centric design makes XML document creation, manipulation, transformation, and parsing a no-brainer for Java developers.

In these articles, we explored the purpose that JDOM serves in filling in the gaps where SAX and DOM fail in XML document manipulation. We also explored the JDOM API in depth, then in Part 2 we demonstrated how to use the API to perform common tasks such as inputting and outputting JDOM documents, as well as how to use JDOM with XSLT.

JDOM recently was accepted as a Java Specification Request (JSR-102) by the Java Community Process (JCP). As such, expect to hear a great deal more about JDOM in the future as it continues to be embraced by the Java community.

Acknowledgments
Special thanks to Steven Gould for sharing his expertise in JDOM and working so diligently with me on this series.

Resources
1. JDOM: www.jdom.org
2. JDOM discussion lists: www.jdom.org/involved/lists.html
3. Java API for XML Processing (JAXP): http://java.sun.com/xml/xml_jaxp.html
4. The Collections API for JDK 1.1: www.java.sun.com/products/javabeans/infobus/
5. For an alternative way of using JDOM with XSLT, see "Using JDOM and XSLT: How to Find the Right Input for Your Processor," IBM developerWorks, March 2001, by Brett McLaughlin (www-106.ibm.com/developerworks/xml/library/x-tipjdom.html).

More Stories By Shari Jones

Shari Jones is a freelance journalist and a technical writer. A former consultant, she has more than 10 years of experience writing technical articles and documentation - covering all areas of the high-tech industry. She has written for various magazines, including SunWorld, Linux.SYS-CON.com, IBM's developerWorks and others. Her work also has been selected for inclusion on Sun's Solaris Developer Connection.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Every day we read jaw-dropping stats on the explosion of data. We allocate significant resources to harness and better understand it. We build businesses around it. But we’ve only just begun. For big payoffs in Big Data, CIOs are turning to cognitive computing. Cognitive computing’s ability to securely extract insights, understand natural language, and get smarter each time it’s used is the next, logical step for Big Data.
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
There's no doubt that the Internet of Things is driving the next wave of innovation. Google has spent billions over the past few months vacuuming up companies that specialize in smart appliances and machine learning. Already, Philips light bulbs, Audi automobiles, and Samsung washers and dryers can communicate with and be controlled from mobile devices. To take advantage of the opportunities the Internet of Things brings to your business, you'll want to start preparing now.
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner is Product Manager of the Omega DevCloud with KORE Telematics Inc., will discuss the evolving requirements for developers as IoT matures and conduct a live demonstration of how quickly application development can happen when the need to comply...
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
Converging digital disruptions is creating a major sea change - Cisco calls this the Internet of Everything (IoE). IoE is the network connection of People, Process, Data and Things, fueled by Cloud, Mobile, Social, Analytics and Security, and it represents a $19Trillion value-at-stake over the next 10 years. In her keynote at @ThingsExpo, Manjula Talreja, VP of Cisco Consulting Services, will discuss IoE and the enormous opportunities it provides to public and private firms alike. She will share what businesses must do to thrive in the IoE economy, citing examples from several industry sector...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
Disruptive macro trends in technology are impacting and dramatically changing the "art of the possible" relative to supply chain management practices through the innovative use of IoT, cloud, machine learning and Big Data to enable connected ecosystems of engagement. Enterprise informatics can now move beyond point solutions that merely monitor the past and implement integrated enterprise fabrics that enable end-to-end supply chain visibility to improve customer service delivery and optimize supplier management. Learn about enterprise architecture strategies for designing connected systems tha...
There's Big Data, then there's really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at Big Data Expo®, Hannah Smalltree, Director at Treasure Data, discussed how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines...
SYS-CON Events announced today that the "First Containers & Microservices Conference" will take place June 9-11, 2015, at the Javits Center in New York City. The “Second Containers & Microservices Conference” will take place November 3-5, 2015, at Santa Clara Convention Center, Santa Clara, CA. Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
IoT is still a vague buzzword for many people. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. He also discussed how IoT is perceived by investors and how venture capitalist access this space. Other topics discussed were barriers to success, what is new, what is old, and what the future may hold. Mike Kavis is Vice President & Principal Cloud Architect at Cloud Technology Pa...