Click here to close now.



Welcome!

Apache Authors: William Schmarzo, Christopher Harrold, Elizabeth White, Talend Inc., Adrian Bridgwater

Related Topics: Industrial IoT

Industrial IoT: Article

Integrating Enterprise Information on Demand with XQuery - Part 2

Integrating Enterprise Information on Demand with XQuery - Part 2

In Part I of this article (XML-J, Vol. 4, issue 6), we introduced the enterprise information integration (EII) problem and explained how the XML query language XQuery and related technologies - specifically XML, XML Schema, and Web services - are central to enabling this age-old problem to be successfully addressed at last.

We provided a technical overview of the XQuery language and presented a simple "single view of Customer" example to illustrate XQuery's role in the EII domain. The example was based on an electronics retailer that wanted to share customer information across three portals - portals for customer self-service, credit approval, and product service. The information to be integrated resided in a variety of back-end information sources, including two relational database management systems, an SAP system, and a Web service.

In this article, our XQuery/EII saga continues. In this installment, we look at how EII relates to two other technologies designed for integration tasks, namely enterprise application integration (EAI) and extract-transform-load (ETL) tools. We also take a brief look at BEA Liquid Data for WebLogic, an XQuery-based EII offering, and discuss how XQuery and Liquid Data were put to use recently in a telecommunications-related customer project.

What About EAI?
Given the industry buzz around EAI today, a natural question about EII is "so why bother?" That is, why isn't a modern EAI solution alone - for example, a workflow engine with XML-based data transformation capabilities - sufficient to solve the EII problem? The answer is, in principle, that EAI is in fact sufficient to solve the EII problem. A developer could always choose to hand-build a set of workflows, writing one workflow per application-level "query" to deliver the desired information back to the calling applications. In the example from Part I of this article, three hand-tailored workflows could instead be written to provide information retrieval capabilities comparable to our XQuery-based solution. But is that the best approach, in terms of development time and maintenance cost?

The basic question here is when to use a declarative query language (XQuery in the case of modern EII) versus constructing code in a procedural language (a workflow language in the case of EAI). The lessons from the relational database revolution are clear: When applicable, a declarative approach offers significant advantages. Instead of hand-constructing a "query plan" (EAI workflow) to extract the needed data from each of the data sources in some manually predefined order, the EII approach allows a single, smaller, and simpler declarative query to be written.

The resulting benefits should be obvious. First, the user does not need to build each query plan by hand, which could involve a considerable effort. Instead, the user specifies (when defining the core view) what data sources are relevant and what logical conditions relate and characterize the data to be retrieved. Second, queries can be optimized automatically by the EII middleware, resulting in an optimal query execution plan (order of accessing the sources, queries or methods to extract the data, etc.) for each different query. For example, using EAI, one central workflow could be written to retrieve all of the customer information in Part I's example, and then other workflows could be written to first call this workflow and then further filter the results. However, in the EII approach, the query processor will (for each query) prune out irrelevant data sources as well as push SQL selection conditions (such as only retrieving "Open" support cases in Listing 2 of Part I) down to any RDBMS data sources. Third, as the data sources change over time in terms of their schemas, statistics, or performance, the EII user will not be forced to rewrite all of his or her queries. Simply maintaining each base view query and re-optimizing the other queries will adapt their query execution plans to the new situation. In contrast, in the case of EAI, many workflows would have to be rewritten to handle most such changes.

There really isn't an either/or choice to be made between EAI and EII at all. Both technologies have critical roles to play in an overall enterprise integration solution. These technologies are complementary: EII provides ease of data integration, while EAI provides ease of process integration. EII is appropriate for composing integrated views and queries over enterprise data. EAI is the appropriate technology for creating composite applications that orchestrate the functional capabilities of a set of related but independent applications, Web services, etc. Moreover, EII can be used to handily augment EAI in scenarios where workflows need to access integrated data views. For example, if our electronics retailer wanted its order process to offer free shipping to customers who have ordered more than $1,000 of goods during the year and who have accumulated more than 5,000 reward points, the integrated view of customer from Part I could be used to easily access the relevant information from within the order entry workflow.

What About ETL?
Another technology related to EII is ETL. In fact, ETL tools are designed precisely for the purpose of integrating data from multiple sources. These tools are therefore another category of software that naturally leads to a "why bother with EII?" question - why isn't ETL technology the answer? As you'll see, the answer is again that both technologies have their place in modern IT architectures.

ETL tools are designed for use in moving data from a variety of sources into a data warehouse for offline analysis and reporting purposes. As the name suggests, ETL tools provide facilities for extracting data from a source; transforming that data into a more suitable form for inclusion in the data warehouse, possibly cleansing it in the process; and then loading the transformed data into the warehouse's database. Typical ETL tools are therefore focused on supporting the design and administration of data migration, cleansing, and transformation processes. These are often batch processes that occur on a daily or weekly basis.

Data warehouses and the ETL tools that feed them are invaluable for enabling businesses to aggregate and analyze historical information. For example, our electronics retailer might very well want to keep track of customer data, sales data, and product issue data over a period of years in order to analyze customer behavior by geographic region over time, improve their credit card risk model, and so on. A data warehouse is the appropriate place to retain such data and run large analytical queries against it, and ETL technology is the right technology today for creating, cleaning, and maintaining the data in the warehouse. However, ETL is not the right technology for building applications that need access to current operational data - it doesn't support the declarative creation of views or real-time access to operational data through queries.

For applications that need to integrate current information, Part I of this article showed how XQuery can be used to declaratively specify reusable views that aggregate data from multiple operational stores and how XQuery can be used to write XML queries over such integrated views. We also explained how standard database query processing techniques, including view expansion, predicate pushdown, and distributed query optimization, can be applied to XQuery, making XQuery-based EII an excellent technological fit for such applications.

Clearly, both ETL and EII technologies have important roles to play in today's enterprise. ETL serves to feed data warehouses, while EII is an enabler for applications that need timely access to current, integrated information from a variety of operational enterprise data sources. As with EAI, there are also cases where the two technologies come together. As one example, an ETL tool could be used to help create and maintain a cross-reference table to relate different notions of "customer id" for use in creating XQuery-based EII views across different back-end systems. As another example, an ETL-fed data warehouse could be used to build a portal for analyzing the historical behavior of a company's top customers, with an EII tool used to allow click-through inspection of the customers' purchases in the past 24 hours.

Putting XQuery-Based EII to Work
For the reasons discussed in this article, XQuery-based EII middleware is an emerging product segment that promises to deliver the tools and technology needed in this important space. One commercially available XQuery-based middleware product is BEA Liquid Data for WebLogic. Liquid Data is capable of accessing data from relational database management systems, Web services, packaged applications (through J2EE CA adapters and application views), XML files, XML messages, and, through a custom function mechanism, most any other data source as well. For illustration purposes, the architecture of Liquid Data is depicted in Figure 1. Liquid Data provides default XML views of all of its data sources and provides an XQuery-based graphical view and query editor for use in integrating and enhancing information drawn from one or more data sources. It includes a distributed query processing engine as well as providing advanced features such as support for query result caching and both data-source-level and stored query-level access control.

As a final example of the applicability of XQuery to enterprise information integration problems, we'll describe an actual customer integration exercise where Liquid Data was put to use. In that project, a large telecommunications vendor wanted to create a single view of order information for one of its business divisions. The goal of the project was to make integrated order information available to the division's customers (other businesses) through a Web portal, enabling their customers to log in and check on the status of their orders, as well as making information available to the division's own customer service representatives.

The division had data distributed across multiple systems, including a relational database containing order summary information and two different order management systems. Order details were kept in one or the other of the two order management systems, depending on the type of order. Functionality-wise, a limited view of order details was provided through the customer order status portal that the division built using Liquid Data, whereas customer service representatives were permitted to see all of the order data through their portal. In both cases, it was possible to search for order information by various combinations of purchase order number, date range, and order.

The use of XQuery-based EII technology enabled the customer to complete their portal project in much less time than they had expected it to take with traditional technologies, and their total cost of ownership was also lower due to the reusability of Liquid Data assets and the low cost of maintenance enabled by EII.

Summary
In this article, we have explained how XQuery is beginning to transform the integration world, making it possible to finally tackle the enterprise information integration problem where past attempts have failed. In Part I we provided an overview of XQuery and illustrated how it could be used to integrate the disparate information sources of a hypothetical electronics retailer. In Part II we discussed the relationship of EII to EAI and ETL technologies and then briefly presented BEA's XQuery-based EII product and described one of the customer projects in which it was used.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
"We work in the area of Big Data analytics and Big Data analytics is a very crowded space - you have Hadoop, ETL, warehousing, visualization and there's a lot of effort trying to get these tools to talk to each other," explained Mukund Deshpande, head of the Analytics practice at Accelerite, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Cloud Expo, Inc. has announced today that Andi Mann returns to 'DevOps at Cloud Expo 2016' as Conference Chair The @DevOpsSummit at Cloud Expo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "DevOps is set to be one of the most profound disruptions to hit IT in decades," said Andi Mann. "It is a natural extension of cloud computing, and I have seen both firsthand and in independent research the fantastic results DevOps delivers. So I am excited t...
Basho Technologies has announced the latest release of Basho Riak TS, version 1.3. Riak TS is an enterprise-grade NoSQL database optimized for Internet of Things (IoT). The open source version enables developers to download the software for free and use it in production as well as make contributions to the code and develop applications around Riak TS. Enhancements to Riak TS make it quick, easy and cost-effective to spin up an instance to test new ideas and build IoT applications. In addition to...
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
Internet of @ThingsExpo has announced today that Chris Matthieu has been named tech chair of Internet of @ThingsExpo 2016 Silicon Valley. The 6thInternet of @ThingsExpo will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Presidio has received the 2015 EMC Partner Services Quality Award from EMC Corporation for achieving outstanding service excellence and customer satisfaction as measured by the EMC Partner Services Quality (PSQ) program. Presidio was also honored as the 2015 EMC Americas Marketing Excellence Partner of the Year and 2015 Mid-Market East Partner of the Year. The EMC PSQ program is a project-specific survey program designed for partners with Service Partner designations to solicit customer feedbac...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, provided an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profession...
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...
Ask someone to architect an Internet of Things (IoT) solution and you are guaranteed to see a reference to the cloud. This would lead you to believe that IoT requires the cloud to exist. However, there are many IoT use cases where the cloud is not feasible or desirable. In his session at @ThingsExpo, Dave McCarthy, Director of Products at Bsquare Corporation, will discuss the strategies that exist to extend intelligence directly to IoT devices and sensors, freeing them from the constraints of ...
Connected devices and the industrial internet are growing exponentially every year with Cisco expecting 50 billion devices to be in operation by 2020. In this period of growth, location-based insights are becoming invaluable to many businesses as they adopt new connected technologies. Knowing when and where these devices connect from is critical for a number of scenarios in supply chain management, disaster management, emergency response, M2M, location marketing and more. In his session at @Th...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
There are several IoTs: the Industrial Internet, Consumer Wearables, Wearables and Healthcare, Supply Chains, and the movement toward Smart Grids, Cities, Regions, and Nations. There are competing communications standards every step of the way, a bewildering array of sensors and devices, and an entire world of competing data analytics platforms. To some this appears to be chaos. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Bradley Holt, Developer Advocate a...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm ...
Apixio Inc. has raised $19.3 million in Series D venture capital funding led by SSM Partners with participation from First Analysis, Bain Capital Ventures and Apixio’s largest angel investor. Apixio will dedicate the proceeds toward advancing and scaling products powered by its cognitive computing platform, further enabling insights for optimal patient care. The Series D funding comes as Apixio experiences strong momentum and increasing demand for its HCC Profiler solution, which mines unstruc...
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2016 Silicon Valley. The 19th Cloud Expo and 6th @ThingsExpo will take place on November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Interne...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
The IoT is changing the way enterprises conduct business. In his session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, discussed how businesses can gain an edge over competitors by empowering consumers to take control through IoT. He cited examples such as a Washington, D.C.-based sports club that leveraged IoT and the cloud to develop a comprehensive booking system. He also highlighted how IoT can revitalize and restore outdated business models, making them profitable ...